.

Monday, January 27, 2020

Plasmon-hybridization-induced optical torque between twisted metal nanorods

An’an Wu, Yoshito Y. Tanaka, and Tsutomu Shimura

We present a numerical study of optical torque between two twisted metal nanorods due to the angular momentum of the electromagnetic field emerging from their plasmonic coupling. Our results indicate that the interaction optical torque on the nanorods can be strongly enhanced by their plasmon coupling, which highly depends on not only the gap size but also the twisted angle between the nanorods. The behaviors of the optical torque are different between two plasmon coupling modes: hybridized bonding and anti-bonding modes with different resonances. The rotations of the twisted nanorods with the bonding and anti-bonding mode excitations lead to mutually parallel and perpendicular alignments, respectively. At an incident intensity of 10 mW/μm2, the rotational potential depths are more than 30 times as large as the Brownian motion energy, enabling the optical alignments with angle fluctuations less than ∼±10°. Thus, this optical alignment of the nanoparticles with the plasmon coupling allows dynamic control of the plasmonic characteristics and functions.

DOI

No comments: