.

Friday, November 22, 2019

Sustained self-starting orbital motion of a glass-fiber “nanoengine” driven by photophoretic forces

Shangran Xie, Riccardo Pennetta, Zheqi Wang, Philip St. J. Russell

Controllable optically-driven rotation of microscopic objects is desirable in many applications but is difficult to achieve. Here we report sustained self-starting orbital motion of a clamped elongated nanostructure—a glass-fiber nanospike—when a CW laser beam is focused axially on to its tip. Analysis shows that photophoretic anti-trapping forces, acting on the nanospike with a delayed response, introduce optomechanical gain into the mechanical motion, overcoming the intrinsic mechanical dissipation and resulting in growth from noise of oscillations at the resonant frequency of the nanospike. These photophoretic forces further enable phase-locking of the orthogonal fast and slow vibrations of the nanospike (induced by slight mechanical anisotropy), giving rise to a self-sustained orbital motion. The locked phase of orbital motion can be changed by tuning the gas pressure and adjusting the geometrical asymmetry of the system. This light-driven nano-engine opens up a new degree of freedom for controlling the rotational motion of elongated nano-objects.

DOI

No comments: