.

Monday, October 21, 2019

Flow with nanoparticle clustering controlled by optical forces in quartz glass nanoslits

Tetsuro Tsuji, Yuki Matsumoto, Satoyuki Kawano

In this paper, we demonstrate nanoparticle flow control using an optical force in a confined nanospace. Using nanofabrication technologies, all-quartz-glass nanoslit channels with a sudden contraction are developed. Because the nanoslit height is comparable to the nanoparticle diameter, the motion of particles is restricted in the channel height direction, resulting in almost two-dimensional particle motion. The laser irradiates at the entrance of the sudden contraction channel, leading the trapped nanoparticles to form a cluster. As a result, the translocation of nanoparticles into the contraction channel is suppressed. Because the particle translocation restarts when the laser irradiation is stopped, we can control the nanoparticle flow into the contraction channel by switching the trapping and release of particles, realizing an intermittent flow of nanoparticles. Such a particle flow control technique in a confined nanospace is expected to improve the functions of nanofluidic devices by transporting a target material selectively to a desired location in the device.

DOI

No comments: