.

Wednesday, August 21, 2019

The transmembrane protein fibrocystin/polyductin regulates cell mechanics and cell motility

Stefanie Puder, Tony Fischer and Claudia Tanja Mierke

Polycystic kidney disease is a disorder that leads to fluid filled cysts that replace normal renal tubes. During the process of cellular development and in the progression of the diseases, fibrocystin can lead to impaired organ formation and even cause organ defects. Besides cellular polarity, mechanical properties play major roles in providing the optimal apical-basal or anterior-posterior symmetry within epithelial cells. A breakdown of the cell symmetry that is usually associated with mechanical property changes is known to be essential in many biological processes such as cell migration, polarity and pattern formation especially during development and diseases such as the autosomal recessive cystic kidney disease. Since the breakdown of the cell symmetry can be evoked by several proteins including fibrocystin, we hypothesized that cell mechanics are altered by fibrocystin. However, the effect of fibrocystin on cell migration and cellular mechanical properties is still unclear. In order to explore the function of fibrocystin on cell migration and mechanics, we analyzed fibrocystin knockdown epithelial cells in comparison to fibrocystin control cells. We found that invasiveness of fibrocystin knockdown cells into dense 3D matrices was increased and more efficient compared to control cells. Using optical cell stretching and atomic force microscopy, fibrocystin knockdown cells were more deformable and exhibited weaker cell-matrix as well as cell-cell adhesion forces, respectively. In summary, these findings show that fibrocystin knockdown cells displayed increased 3D matrix invasion through providing increased cellular deformability, decreased cell-matrix and reduced cell-cell adhesion forces.

DOI

No comments: