.

Tuesday, June 11, 2019

Optical binding via surface plasmon polariton interference

Natalia Kostina, Mihail Petrov, Aliaksandra Ivinskaya, Sergey Sukhov, Andrey Bogdanov, Ivan Toftul, Manuel Nieto-Vesperinas, Pavel Ginzburg, and Alexander Shalin
Optical binding allows creation of mechanically stable nanoparticle configurations owing to formation of self-consistent optical trapping potentials. While the classical diffraction limit prevents achieving deeply subwavelength arrangements, auxiliary nanostructures enable tailoring optical forces via additional interaction channels. Here, a dimer configuration next to a metal surface was analyzed in detail and the contribution of surface plasmon polariton waves was found to govern the interaction dynamics. It is shown that the interaction channel, mediated by resonant surface waves, enables achieving subwavelength stable dimers. Furthermore, the vectorial structure of surface modes allows binding between two dipole nanoparticles along the direction of their dipole moments, contrary to vacuum binding, where a stable configuration is formed in the direction perpendicular to the polarization of the dipole moments. In addition, the enhancement by one order of magnitude of the optical binding stiffness is predicted owing to the surface plasmon polariton interaction channel. These phenomena pave the way for developing new flexible optical manipulators, allowing for control over a nanoparticle trajectory on subwavelength scales and opening opportunities for optical-induced anisotropic (i.e., with different periods along the field polarization as well as perpendicular to it) organization of particles on a plasmonic substrate.

DOI

No comments: