.

Wednesday, May 23, 2018

Out-of-plane Rotation Control of Biological Cells with a Robot-Tweezers Manipulation System for Orientation-based Cell Surgery

Mingyang Xie; Adnan Shakoor; Yajing Shen; James K. Mills; Dong Sun

In many cell surgery applications, cell must be oriented properly such that the micro-surgery tool can access the target components with minimum damage to the cell. In this paper, a scheme for out of image plane orientation control of suspended biological cells using robotic controlled optical tweezers is presented for orientation-based cell surgery. Based on our previous work on planar cell rotation using optical tweezers, the dynamic model of cell out-of-plane orientation control is formulated by using the T-matrix approach. Vision-based algorithms are developed to extract the cell out of image plane orientation angles, based on 2D image slices obtained under optical microscope. A robust feedback controller is then proposed to achieve cell out-of-plane rotation. Experiments of automated out of image plane rotational control for cell nucleus extraction surgery are performed to demonstrate the effectiveness of the proposed approach. This approach advances robot-aided single cell manipulation and produces impactful benefits to cell surgery applications such as nucleus transplantation and organelle biopsy in precision medicine.

DOI

No comments: