It is well known that a circularly polarized Gaussian beam carries spin angular momentum, but not orbital angular momentum. This paper demonstrates that focusing a beam carrying spin angular momentum can induce an orbital angular momentum which we used to drive the orbital motion of a micron-sized metal particle that is trapped off the beam axis. The direction of the orbital motion is controlled by the handedness of the circular polarization. The orbiting dynamics of the trapped particle, which acted as an optical micro-detector, were quantitatively measured and found to be in excellent agreement with the theoretical predictions.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Monday, December 7, 2009
Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam
Yiqiong Zhao, David Shapiro, David Mcgloin, Daniel T. Chiu, and Stefano Marchesini
It is well known that a circularly polarized Gaussian beam carries spin angular momentum, but not orbital angular momentum. This paper demonstrates that focusing a beam carrying spin angular momentum can induce an orbital angular momentum which we used to drive the orbital motion of a micron-sized metal particle that is trapped off the beam axis. The direction of the orbital motion is controlled by the handedness of the circular polarization. The orbiting dynamics of the trapped particle, which acted as an optical micro-detector, were quantitatively measured and found to be in excellent agreement with the theoretical predictions.
It is well known that a circularly polarized Gaussian beam carries spin angular momentum, but not orbital angular momentum. This paper demonstrates that focusing a beam carrying spin angular momentum can induce an orbital angular momentum which we used to drive the orbital motion of a micron-sized metal particle that is trapped off the beam axis. The direction of the orbital motion is controlled by the handedness of the circular polarization. The orbiting dynamics of the trapped particle, which acted as an optical micro-detector, were quantitatively measured and found to be in excellent agreement with the theoretical predictions.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment