.

Wednesday, November 15, 2017

Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution

Hailey L. Gahlon, Louis J. Romano, and David Rueda

Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.

DOI

A review on optical actuators for microfluidic systems

Tie Yang, Yue Chen and Paolo Minzioni

During the last few decades microfluidic systems have become more and more popular and their relevance in different fields is continually growing. In fact, the use of microchannels allows a significant reduction of the required sample-volume and opens the way to a completely new set of possible investigations, including the study of the properties of cells, the development of new cells' separation techniques and the analysis of single-cell proteins. One of the main differences between microscopic and macroscopic systems is obviously dictated by the need for suitable actuation mechanisms, which should allow precise control of microscopic fluid volumes and of micro-samples inside the fluid. Even if both syringe-pump and pneumatic-pump technologies significantly evolved and they currently enable sub-μL samples control, completely new approaches were recently developed for the manipulation of samples inside the microchannel. This review is dedicated to describing different kinds of optical actuators that can be applied in microfluidic systems for sample manipulation as well as for pumping. The basic principles underlying the optical actuation mechanisms will be described first, and then several experimental demonstrations will be reviewed and compared.

DOI

Stochastic Optical Trapping and Manipulation of Micro Object with Neural-Network Adaptation

Xiang Li ; Chien Chern Cheah

Optical tweezers are capable of manipulating micro/nano objects without any physical contact, and therefore widely used in biomedical engineering and biological science. While much progress has been achieved in automated optical manipulation of micro objects, Brownian motion is commonly ignored in the stability analysis in order to simplify the control problem. However, random Brownian perturbations exist in micromanipulation problem and therefore may result in failure of optical trapping due to the escape of micro object from the trap. In addition, it is usually assumed in the development of controller that the model of trapping stiffness is known, but the model is difficult to obtain because of its spatially varying feature around the centre of laser beam and variations with laser power and dimensions of objects. In this paper, a neural-network control method is proposed for optical trapping and manipulation of micro object, in the presence of stochastic perturbations and unknown trapping stiffness. The unknown trapping stiffness and dynamic parameters of micro objects, which vary with different laser power settings and sizes of the objects, are approximated by using adaptive neural networks. The stability analysis is carried out from stochastic perspectives, by considering the effect of Brownian motion in the dynamic model. Both experimental results and simulation results are presented.

DOI

Radiation forces of beams generated by Gaussian mirror resonator on a Rayleigh dielectric sphere

Bin Tang, Kai Chen, Lirong Bian, Xin Zhou, Li Huang & Yi Jin

Optical trapping and manipulating of micron-sized particles have attracted enormous interests due to the potential applications in biotechnology and nanoscience. In this work, we investigate numerically and theoretically the radiation forces acting on a Rayleigh dielectric particle produced by beams generated by Gaussian mirror resonator (GMR) in the Rayleigh scattering regime. The results show that the focused beams generated by GMR can be used to trap and manipulate the particles with both high and low index of refractive near the focus point. The influences of optical parameters of the beams generated by GMR on the radiation forces are analyzed in detail. Furthermore, the conditions for trapping stability are also discussed in this paper.

DOI

Ferdinando Borghese (26 May 1940–19 January 2017)

M.A. Iatì, R. Saija, O.M. Maragò, P. Denti

Here we summarize the life and scientific legacy of Ferdinando Borghese (1940–2017). He has been a pioneer in the theory and modeling of light scattering by nonspherical particles and clusters in the framework of the transition matrix approach. His work has found applications in many research fields ranging from interstellar dust to aerosol science, plasmonics, and optical trapping.

DOI

Dimerization regulates both deaminase-dependent and deaminase-independent HIV-1 restriction by APOBEC3G

Michael Morse, Ran Huo, Yuqing Feng, Ioulia Rouzina, Linda Chelico & Mark C. Williams

APOBEC3G (A3G) is a human enzyme that inhibits human immunodeficiency virus type 1 (HIV-1) infectivity, in the absence of the viral infectivity factor Vif, through deoxycytidine deamination and a deamination-independent mechanism. A3G converts from a fast to a slow binding state through oligomerization, which suggests that large A3G oligomers could block HIV-1 reverse transcriptase-mediated DNA synthesis, thereby inhibiting HIV-1 replication. However, it is unclear how the small number of A3G molecules found in the virus could form large oligomers. Here we measure the single-stranded DNA binding and oligomerization kinetics of wild-type and oligomerization-deficient A3G, and find that A3G first transiently binds DNA as a monomer. Subsequently, A3G forms N-terminal domain-mediated dimers, whose dissociation from DNA is reduced and their deaminase activity inhibited. Overall, our results suggest that the A3G molecules packaged in the virion first deaminate viral DNA as monomers before dimerizing to form multiple enzymatically deficient roadblocks that may inhibit reverse transcription.

Wednesday, November 8, 2017

Emulsified and Liquid–Liquid Phase-Separated States of α-Pinene Secondary Organic Aerosol Determined Using Aerosol Optical Tweezers

Kyle Gorkowski, Neil M. Donahue, and Ryan C. Sullivan

We demonstrate the first capture and analysis of secondary organic aerosol (SOA) on a droplet suspended in an aerosol optical tweezers (AOT). We examine three initial chemical systems of aqueous NaCl, aqueous glycerol, and squalane at ∼75% relative humidity. For each system we added α-pinene SOA—generated directly in the AOT chamber—to the trapped droplet. The resulting morphology was always observed to be a core of the original droplet phase surrounded by a shell of the added SOA. We also observed a stable emulsion of SOA particles when added to an aqueous NaCl core phase, in addition to the shell of SOA. The persistence of the emulsified SOA particles suspended in the aqueous core suggests that this metastable state may persist for a significant fraction of the aerosol lifecycle for mixed SOA/aqueous particle systems. We conclude that the α-pinene SOA shell creates no major diffusion limitations for water, glycerol, and squalane core phases under humid conditions. These experimental results support the current prompt-partitioning framework used to describe organic aerosol in most atmospheric chemical transport models and highlight the prominence of core–shell morphologies for SOA on a range of core chemical phases.

DOI

Elliptical orbits of microspheres in an evanescent field

Lulu Liu, Simon Kheifets, Vincent Ginis, Andrea Di Donato, and Federico Capasso

We examine the motion of periodically driven and optically tweezed microspheres in fluid and find a rich variety of dynamic regimes. We demonstrate, in experiment and in theory, that mean particle motion in 2D is rarely parallel to the direction of the applied force and can even exhibit elliptical orbits with nonzero orbital angular momentum. The behavior is unique in that it depends neither on the nature of the microparticles nor that of the excitation; rather, angular momentum is introduced by the particle’s interaction with the anisotropic fluid and optical trap environment. Overall, we find this motion to be highly tunable and predictable.

DOI

Mechanically switching single-molecule fluorescence of GFP by unfolding and refolding

Ziad Ganim and Matthias Rief

Green fluorescent protein (GFP) variants are widely used as genetically encoded fluorescent fusion tags, and there is an increasing interest in engineering their structure to develop in vivo optical sensors, such as for optogenetics and force transduction. Ensemble experiments have shown that the fluorescence of GFP is quenched upon denaturation. Here we study the dependence of fluorescence on protein structure by driving single molecules of GFP into different conformational states with optical tweezers and simultaneously probing the chromophore with fluorescence. Our results show that fluorescence is lost during the earliest events in unfolding, 3.5 ms before secondary structure is disrupted. No fluorescence is observed from the unfolding intermediates or the ensemble of compact and extended states populated during refolding. We further demonstrate that GFP can be mechanically switched between emissive and dark states. These data definitively establish that complete structural integrity is necessary to observe single-molecule fluorescence of GFP.

DOI

Optical tweezing and binding at high irradiation powers on black-Si

Tatsuya Shoji, Ayaka Mototsuji, Armandas Balčytis, Denver Linklater, Saulius Juodkazis & Yasuyuki Tsuboi

Nowadays, optical tweezers have undergone explosive developments in accordance with a great progress of lasers. In the last decade, a breakthrough brought optical tweezers into the nano-world, overcoming the diffraction limit. This is called plasmonic optical tweezers (POT). POT are powerful tools used to manipulate nanomaterials. However, POT has several practical issues that need to be overcome. First, it is rather difficult to fabricate plasmonic nanogap structures regularly and rapidly at low cost. Second, in many cases, POT suffers from thermal effects (Marangoni convection and thermophoresis). Here, we propose an alternative approach using a nano-structured material that can enhance the optical force and be applied to optical tweezers. This material is metal-free black silicon (MFBS), the plasma etched nano-textured Si. We demonstrate that MFBS-based optical tweezers can efficiently manipulate small particles by trapping and binding. The advantages of MFBS-based optical tweezers are: (1) simple fabrication with high uniformity over wafer-sized areas, (2) free from thermal effects detrimental for trapping, (3) switchable trapping between one and two - dimensions, (4) tight trapping because of no detrimental thermal forces. This is the NON-PLASMONIC optical tweezers.

DOI

Improved generation of periodic optical trap arrays using noniterative algorithm

Anita Dalal; Aniket Chowdhury; Raktim Dasgupta; Shovan Kumar Majumder

In a holographic optical tweezers setup, although the use of noniterative algorithms can result in the fast generation of multiple traps array, the performance of these algorithms is often inferior compared to iterative types of algorithms. Particularly in the case of symmetric trap arrays, the performance of noniterative algorithms is very poor. Suitability of the use of a noniterative superposition algorithm for generating symmetric trap arrays has been investigated after introducing small position disorders for the individual traps. It could be seen that the introduction of small disorders in the positions of the individual traps can significantly improve the quality of the generated trap array pattern over the case when an ideal symmetric pattern is targeted.

DOI

Tuesday, November 7, 2017

Manufacturing with light - micro-assembly of opto-electronic microstructures

Shuailong Zhang, Yongpeng Liu, Yang Qian, Weizhen Li, Joan Juvert, Pengfei Tian, Jean-Claude Navarro, Alasdair W Clark, Erdan Gu, Martin D. Dawson, Jonathan M. Cooper, and Steven L. Neale

Optical micromanipulation allows the movement and patterning of discrete micro-particles within a liquid environment. However, for manufacturing applications it is desirable to remove the liquid, leaving the patterned particles in place. In this work, we have demonstrated the use of optoelectronic tweezers (OET) to manipulate and accurately assemble Sn62Pb36Ag2 solder microspheres into tailored patterns. A technique based on freeze-drying technology was then developed that allows the assembled patterns to be well preserved and fixed in place after the liquid medium in the OET device is removed. After removing the liquid from the OET device and subsequently heating the assembled pattern and melting the solder microspheres, electrical connections between the microspheres were formed, creating a permanent conductive bridge between two isolated metal electrodes. Although this method is demonstrated with 40 µm diameter solder beads arranged with OET, it could be applied to a great range of discrete components from nanowires to optoelectronic devices, thus overcoming one of the basic hurdles in using optical micromanipulation techniques in a manufacturing micro-assembly setting.

DOI

KiloHertz Bandwidth, Dual-Stage Haptic Device Lets You Touch Brownian Motion

Tianming Lu; Cécile Pacoret; David Hériban; Abdenbi Mohand-Ousaid; Stéphane Régnier; Vincent Hayward

This paper describes a haptic interface that has a uniform response over the entire human tactile frequency range. Structural mechanics makes it very difficult to implement articulated mechanical systems that can transmit high frequency signals. Here, we separated the frequency range into two frequency bands. The lower band is within the first structural mode of the corresponding haptic device while the higher one can be transmitted accurately by a fast actuator operating from conservation of momentum, that is, without reaction forces to the ground. To couple the two systems, we adopted a channel separation approach akin to that employed in the design of acoustic reproduction systems. The two channels are recombined at the tip of the device to give a uniform frequency response from DC to one kHz. In terms of mechanical design, the high-frequency transducer was embedded inside the tip of the main stage so that during operation, the human operator has only to interact with a single finger interface. In order to exemplify the type of application that would benefit from this kind of interface, we applied it to the haptic exploration with microscopic scales objects which are known to behave with very fast dynamics. The novel haptic interface was bilaterally coupled with a micromanipulation platform to demonstrate its capabilities. Operators could feel interaction forces arising from contact as well as those resulting from Brownian motion and could manoeuvre a micro bead in the absence of vision.

DOI

Mesoscopic model for DNA G-quadruplex unfolding

A. E. Bergues-Pupo, I. Gutiérrez, J. R. Arias-Gonzalez, F. Falo & A. Fiasconaro

Genomes contain rare guanine-rich sequences capable of assembling into four-stranded helical structures, termed G-quadruplexes, with potential roles in gene regulation and chromosome stability. Their mechanical unfolding has only been reported to date by all-atom simulations, which cannot dissect the major physical interactions responsible for their cohesion. Here, we propose a mesoscopic model to describe both the mechanical and thermal stability of DNA G-quadruplexes, where each nucleotide of the structure, as well as each central cation located at the inner channel, is mapped onto a single bead. In this framework we are able to simulate loading rates similar to the experimental ones, which are not reachable in simulations with atomistic resolution. In this regard, we present single-molecule force-induced unfolding experiments by a high-resolution optical tweezers on a DNA telomeric sequence capable of adopting a G-quadruplex conformation. Fitting the parameters of the model to the experiments we find a correct prediction of the rupture-force kinetics and a good agreement with previous near equilibrium measurements. Since G-quadruplex unfolding dynamics is halfway in complexity between secondary nucleic acids and tertiary protein structures, our model entails a nanoscale paradigm for non-equilibrium processes in the cell.

DOI

Optical trapping of otoliths drives vestibular behaviours in larval zebrafish

Itia A. Favre-Bulle, Alexander B. Stilgoe, Halina Rubinsztein-Dunlop & Ethan K. Scott

The vestibular system, which detects gravity and motion, is crucial to survival, but the neural circuits processing vestibular information remain incompletely characterised. In part, this is because the movement needed to stimulate the vestibular system hampers traditional neuroscientific methods. Optical trapping uses focussed light to apply forces to targeted objects, typically ranging from nanometres to a few microns across. In principle, optical trapping of the otoliths (ear stones) could produce fictive vestibular stimuli in a stationary animal. Here we use optical trapping in vivo to manipulate 55-micron otoliths in larval zebrafish. Medial and lateral forces on the otoliths result in complementary corrective tail movements, and lateral forces on either otolith are sufficient to cause a rolling correction in both eyes. This confirms that optical trapping is sufficiently powerful and precise to move large objects in vivo, and sets the stage for the functional mapping of the resulting vestibular processing.

DOI

How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics?

Julien Sigüenza, Simon Mendez, Franck Nicoud

Stretching red blood cells using optical tweezers is a way to characterize the mechanical properties of their membrane by measuring the size of the cell in the direction of the stretching (axial diameter) and perpendicularly (transverse diameter). Recently, such data have been used in numerous publications to validate solvers dedicated to the computation of red blood cell dynamics under flow. In the present study, different mechanical models are used to simulate the stretching of red blood cells by optical tweezers. Results first show that the mechanical moduli of the membranes have to be adjusted as a function of the model used. In addition, by assessing the area dilation of the cells, the axial and transverse diameters measured in optical tweezers experiments are found to be insufficient to discriminate between models relevant to red blood cells or not. At last, it is shown that other quantities such as the height or the profile of the cell should be preferred for validation purposes since they are more sensitive to the membrane model.

DOI

Negative force on free carriers in positive index nanoparticles

Mohammad Habibur Rahaman and Brandon A. Kemp

We theoretically demonstrate the reversal of optical forces on free charge carriers in positive refractive index nanostructures. Though optical momentum in positive refractive index materials is necessarily parallel to the local energy flow, reversal of optical momentum transfer can be accomplished by exploiting the geometry and size of subwavelength particles. Using the Mie scattering theory and separation of optical momentum transfers to the bound and free charges and currents, we have shown that metal nanoparticles can exhibit strong momentum transfer to free carriers opposite to the direction of incident electromagnetic waves. This can be explained for small particles in terms of a reversal of Poynting power inside the material resulting in a negative net force on free carriers in small particles. Two-dimensional simulations further illuminate this point by demonstrating the effect of incident wave polarization.

DOI

Friday, November 3, 2017

An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents

Jacob W. Black, Maria Kamenetska, and Ziad Ganim

Observation at the single molecule level has been a revolutionary tool for molecular biophysics and materials science, but single molecule studies of solution-phase chemistry are less widespread. In this work we develop an experimental platform for solution-phase single molecule force spectroscopy in organic solvents. This optical-tweezer-based platform was designed for broad chemical applicability and utilizes optically trapped core–shell microspheres, synthetic polymer tethers, and click chemistry linkages formed in situ. We have observed stable optical trapping of the core–shell microspheres in ten different solvents, and single molecule link formation in four different solvents. These experiments demonstrate how to use optical tweezers for single molecule force application in the study of solution-phase chemistry.

DOI

Determination of size and refractive index of single gold nanoparticles using an optofluidic chip

Y. Z. Shi, S. Xiong, L. K. Chin, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, and A. Q. Liu

We report a real-time method to determine the size, i.e. diameter, and refractive index of single gold nanoparticles using an optofluidic chip, which consists of a quasi-Bessel beam optical chromatography. The tightly focused (∼ 0.5 μm) quasi-Bessel beam with low divergence (NA ∼ 0.04) was used to trap sub-100 nm gold nanoparticles within a long trapping distance of 140 μm. In the experiment, 60 to 100 nm gold nanoparticles were separated efficiently with at least 18 μm. The diameter and refractive index (real and imaginary) of single gold nanoparticles were measured at high resolutions with respect to the trapping distance, i.e. 0.36 nm/μm, 0.003/μm and 0.0016/μm, respectively.

DOI

Effect of laser radiation power on laser trapping of light-absorbing microparticles in air

A. P. Porfirev, S. A. Fomchenkov

We investigate the effects of changing the power of a Gaussian laser beam on the motion of light-absorbing microparticles trapped in the beam region. Laser trapping of such particles was due to the action of so-called photophoretic forces. In addition, we demonstrate the possibility of controlled movement of trapped carbon nanoparticle agglomerations, both in the direction of propagation of the laser beam and in the opposite direction.

DOI

Combinatorial Particle Patterning

Clemens von Bojnicic-Kninski, Roman Popov, Edgar Dörsam, Felix F. Loeffler, Frank Breitling, Alexander Nesterov-Muelle

The unique properties of solid particles make them a promising element of micro- and nanostructure technologies. Solid particles can be used as building blocks for micro and nanostructures, carriers of monomers, or catalysts. The possibility of patterning different kinds of particles on the same substrate opens the pathway for novel combinatorial designs and novel technologies. One of the examples of such technologies is the synthesis of peptide arrays with amino acid particles. This review examines the known methods of combinatorial particle patterning via static electrical and magnetic fields, laser radiation, patterning by synthesis, and particle patterning via chemically modified or microstructured surfaces.

DOI

Rotation and Negative Torque in Electrodynamically Bound Nanoparticle Dimers

Nishant Sule, Yuval Yifat, Stephen K. Gray, and Norbert F. Scherer

We examine the formation and concomitant rotation of electrodynamically bound dimers (EBD) of 150 nm diameter Ag nanoparticles trapped in circularly polarized focused Gaussian beams. The rotation frequency of an EBD increases linearly with the incident beam power, reaching mean values of ∼4 kHz for relatively low incident powers of 14 mW. Using a coupled-dipole/effective polarizability model, we reveal that retardation of the scattered fields and electrodynamic interactions can lead to a “negative torque” causing rotation of the EBD in the direction opposite to that of the circular polarization. This intriguing opposite-handed rotation due to negative torque is clearly demonstrated using electrodynamics-Langevin dynamics simulations by changing particle separations and thus varying the retardation effects. Finally, negative torque is also demonstrated in experiments from statistical analysis of the EBD trajectories. These results demonstrate novel rotational dynamics of nanoparticles in optical matter using circular polarization and open a new avenue to control orientational dynamics through coupling to interparticle separation.

Thursday, November 2, 2017

Observation of radiation pressure induced deformation of high-reflective reflector

Yukun Yuan, Chunyang Gu, Yue Cao, Shiling Wang and Feng Zhou Fang

In this paper, radiation pressure induced deformation of series of thin aluminum reflector is analyzed theoretically and experimentally. Theory of quantum mechanics and material mechanics are applied in 2-D simulations and exhibits good coordination with experiment results. The original laser source used in experiment is Gauss-distributed and has been shaped and expanded, resulting in the flattened light to avoid over heating or even ablation of the irradiated reflector, which can also bring a major deformation. The aluminum reflectors are fabricated by a high precision machine tool into a thickness of 100μm, 200μm, 300μm with a surface roughness of 8 nm in Ra, and then coated with high-reflective(HR) coatings and mounted on a thick 3D printing base made of polylactic acid(PLA). In the experimental process, a vacuum chamber is employed to distinguish the effect of thermal convection. The results shows that radiation pressure induced deformation has an obvious negative correlation with the reflector thickness. The time-deformation curve of the reflector reaches 2.4 μm peak negative displacement at most the moment laser beam is acting when under vacuum circumstance, and soon raises up to over 12 μm positive displacement if the reflector is continuously irradiated. Subsequent analysis shows that such negative displacement is induced by radiation pressure and the positive displacement is caused by thermal expansion of the PLA base.

DOI

Feedback-tracking microrheology in living cells

Kenji Nishizawa, Marcel Bremerich, Heev Ayade, Christoph F. Schmidt, Takayuki Ariga and Daisuke Mizuno

Living cells are composed of active materials, in which forces are generated by the energy derived from metabolism. Forces and structures self-organize to shape the cell and drive its dynamic functions. Understanding the out-of-equilibrium mechanics is challenging because constituent materials, the cytoskeleton and the cytosol, are extraordinarily heterogeneous, and their physical properties are strongly affected by the internally generated forces. We have analyzed dynamics inside two types of eukaryotic cells, fibroblasts and epithelial-like HeLa cells, with simultaneous active and passive microrheology using laser interferometry and optical trapping technology. We developed a method to track microscopic probes stably in cells in the presence of vigorous cytoplasmic fluctuations, by using smooth three-dimensional (3D) feedback of a piezo-actuated sample stage. To interpret the data, we present a theory that adapts the fluctuation-dissipation theorem (FDT) to out-of-equilibrium systems that are subjected to positional feedback, which introduces an additional nonequilibrium effect. We discuss the interplay between material properties and nonthermal force fluctuations in the living cells that we quantify through the violations of the FDT. In adherent fibroblasts, we observed a well-known polymer network viscoelastic response where the complex shear modulus scales as G* ∝ (−iω)3/4. In the more 3D confluent epithelial cells, we found glassy mechanics with G* ∝ (−iω)1/2 that we attribute to glassy dynamics in the cytosol. The glassy state in living cells shows characteristics that appear distinct from classical glasses and unique to nonequilibrium materials that are activated by molecular motors.

DOI

Cell volume change through water efflux impacts cell stiffness and stem cell fate

Ming Guo, Adrian F. Pegoraro, Angelo Mao, Enhua H. Zhou, Praveen R. Arany, Yulong Han, Dylan T. Burnette, Mikkel H. Jensen, Karen E. Kasza, Jeffrey R. Moore, Frederick C. Mackintosh, Jeffrey J. Fredberg, David J. Mooney, Jennifer Lippincott-Schwartz, and David A. Weitz

Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its volume decreases, while its stiffness concomitantly increases. We find that both cortical and cytoplasmic cell stiffness scale with volume for numerous perturbations, including varying substrate stiffness, cell spread area, and external osmotic pressure. The reduction of cell volume is a result of water efflux, which leads to a corresponding increase in intracellular molecular crowding. Furthermore, we find that changes in cell volume, and hence stiffness, alter stem-cell differentiation, regardless of the method by which these are induced. These observations reveal a surprising, previously unidentified relationship between cell stiffness and cell volume that strongly influences cell biology.

DOI

A semi-analytical model of a near-field optical trapping potential well

Mohammad Asif Zaman, Punnag Padhy, and Lambertus Hesselink

A semi-analytical model is proposed to describe the force generated by a near-field optical trap. The model contains fitting parameters that can be adjusted to resemble a reference force-field. The model parameters for a plasmonic near-field trap consisting of a C-shaped engraving are determined using least squares regression. The reference values required for the regression analysis are calculated using the Maxwell stress tensor method. The speed and accuracy of the proposed model are compared with the conventional method. The model is found to be significantly faster with an acceptable level of accuracy.

DOI

Poynting theorem in terms of beam shape coefficients and applications to axisymmetric, dark and non-dark, vortex and non-vortex, beams

Gérard Gouesbet

Electromagnetic arbitrary shaped beams may be described by using expansions over a set of basis functions, with expansion coefficients containing sub-coefficients called beam shape coefficients which encode the structure of the beam. In this paper, the Poynting theorem is expressed in terms of these beam shape coefficients. Special cases (axisymmetric, dark and non-dark beams) are thereafter considered, as well as specific applications to paradigmatic examples, from trivial cases (plane waves and spherical waves) to the more sophisticated case of vortex beams.

DOI

Wednesday, November 1, 2017

Modeling and calibrating nonlinearity and crosstalk in back focal plane interferometry for three-dimensional position detection

Peng Cheng, Sissy M. Jhiang, and Chia-Hsiang Menq

Back focal plane (BFP) interferometry is frequently used to detect the motion of a single laser trapped bead in a photonic force microscope (PFM) system. Whereas this method enables high-speed and high-resolution position measurement, its measurement range is limited by nonlinearity coupled with crosstalk in three-dimensional (3-D) measurement, and validation of its measurement accuracy is not trivial. This Letter presents an automated calibration system in conjunction with a 3-D quadratic model to render rapid and accurate calibration of the laser measurement system. An actively controlled three-axis laser steering system and a high-speed vision-based 3-D particle tracking system are integrated to the PFM system to enable rapid calibration. The 3-D quadratic model is utilized to correct for nonlinearity and crosstalk and, thus, extend the 3-D position detection volume of BFP interferometry. We experimentally demonstrated a 12-fold increase in detection volume when applying the method to track the motion of a 2.0 μm laser trapped polystyrene bead.

DOI

Tailoring optical pulling force on gain coated nanoparticles with nonlocal effective medium theory

X. Bian, D. L. Gao, and L. Gao

We study the optical scattering force on the coated nanoparticles with gain core and nonlocal plasmonic shell in the long-wavelength limit, and demonstrate negative optical force acting on the nanoparticles near the symmetric and/or antisymmetric surface plasmon resonances. To understand the optical force behavior, we propose nonlocal effective medium theory to derive the equivalent permittivity for the coated nanoparticles with nonlocality. We show that the imaginary part of the equivalent permittivity is negative near the surface resonant wavelength, resulting in the negative optical force. The introduction of nonlocality may shift the resonant wavelength of the optical force, and strengthen the negative optical force. Two examples of Fano-like resonant scattering in such coated nanoparticles are considered, and Fano resonance-induced negative optical force is found too. Our findings could have some potential applications in plasmonics, nano-optical manipulation, and optical selection.

DOI

Kinesin rotates unidirectionally and generates torque while walking on microtubules

Avin Ramaiya, Basudev Roy, Michael Bugiel, and Erik Schäffer

Cytoskeletal motors drive many essential cellular processes. For example, kinesin-1 transports cargo in a step-wise manner along microtubules. To resolve rotations during stepping, we used optical tweezers combined with an optical microprotractor and torsion balance using highly birefringent microspheres to directly and simultaneously measure the translocation, rotation, force, and torque generated by individual kinesin-1 motors. While, at low adenosine 5′-triphosphate (ATP) concentrations, motors did not generate torque, we found that motors translocating along microtubules at saturating ATP concentrations rotated unidirectionally, producing significant torque on the probes. Accounting for the rotational work makes kinesin a highly efficient machine. These results imply that the motor’s gait follows a rotary hand-over-hand mechanism. Our method is generally applicable to study rotational and linear motion of molecular machines, and our findings have implications for kinesin-driven cellular processes.

DOI

Optical Trap Assisted Nanopatterning: Process Parallelization and Dynamic Structure Generation

Johannes Strauss, Marcus Baum, Ilya Alexeev, Michael Schmidt

In this publication we present a novel setup for the Optical Trap Assisted Nanopatterning
(OTAN) technology. The setup allows process parallelization and thus higher throughput in this inventive and flexible direct-nanopatterning technology. We have determined the stiffness of the optical traps and compared the obtained result with the single beam OTAN parameters. Furthermore we estimate the increase in throughput for the parallelized approach in comparison to the conventional system.

DOI

Multiple Particles 3-D Trap Based on All-Fiber Bessel Optical Probe

Yaxun Zhang, Xiaoyun Tang, Yu Zhang, Zhihai Liu, Enming Zhao, Xinghua Yang, Jianzhong Zhang, Jun Yang, Libo Yuan

We propose and demonstrate an all-fiber Bessel optical tweezers for multiple microparticles (yeast cells) three-dimensional (3-D) trap. To the best knowledge of us, it is the first time to achieve the 3-D stable noncontact multiple microparticles optical traps with long distance intervals by using a single all-fiber probe. The Bessel beam is produced by splicing coaxially a single-mode fiber and a step index multimode fiber. The convergence of the output Bessel beam is performed by molding the tip of the multimode fiber into a special semiellipsoid shape. The effective trapping range of the all-fiber probe is 0 to 60 μm, which is much longer than normal single fiber optical tweezers probes. The all-fiber Bessel optical probe is convenient to integrate and suitable for the lab on the chip. The structure of this fiber probe is simple, high precision, low cost, and small size, which provides new development for biological cells experiment and operation.

DOI

Monday, October 30, 2017

Particle manipulation beyond the diffraction limit using structured super-oscillating light beams

Brijesh K Singh, Harel Nagar, Yael Roichman and Ady Arie

The diffraction-limited resolution of light focused by a lens was derived in 1873 by Ernst Abbe. Later in 1952, a method to reach sub-diffraction light spots was proposed by modulating the wavefront of the focused beam. In a related development, super-oscillating functions, that is, band-limited functions that locally oscillate faster than their highest Fourier component, were introduced and experimentally applied for super-resolution microscopy. Up till now, only simple Gaussian-like sub-diffraction spots were used. Here we show that the amplitude and phase profile of these sub-diffraction spots can be arbitrarily controlled. In particular, we utilize Hermite–Gauss, Laguerre–Gauss and Airy functions to structure super-oscillating beams with sub-diffraction lobes. These structured beams are then used for high-resolution trapping and manipulation of nanometer-sized particles. The trapping potential provides unprecedented localization accuracy and stiffness, significantly exceeding those provided by standard diffraction-limited beams.

DOI

Nanoscopic control and quantification of enantioselective optical forces

Yang Zhao, Amr A. E. Saleh, Marie Anne van de Haar, Brian Baum, Justin A. Briggs, Alice Lay, Olivia A. Reyes-Becerra & Jennifer A. Dionne

Circularly polarized light (CPL) exerts a force of different magnitude on left- and right-handed enantiomers, an effect that could be exploited for chiral resolution of chemical compounds1, 2, 3, 4, 5 as well as controlled assembly of chiral nanostructures6, 7. However, enantioselective optical forces are challenging to control and quantify because their magnitude is extremely small (sub-piconewton) and varies in space with sub-micrometre resolution2. Here, we report a technique to both strengthen and visualize these forces, using a chiral atomic force microscope probe coupled to a plasmonic optical tweezer8, 9, 10, 11, 12, 13. Illumination of the plasmonic tweezer with CPL exerts a force on the microscope tip that depends on the handedness of the light and the tip. In particular, for a left-handed chiral tip, transverse forces are attractive with left-CPL and repulsive with right-CPL. Additionally, total force differences between opposite-handed specimens exceed 10 pN. The microscope tip can map chiral forces with 2 nm lateral resolution, revealing a distinct spatial distribution of forces for each handedness.

DOI

Reexamination of the Abraham-Minkowski dilemma

Mário G. Silveirinha

Here the Abraham-Minkowski controversy on the correct definition of the light momentum in a macroscopic medium is revisited with the purpose to highlight that an effective medium formalism necessarily restricts the available information on the internal state of a system, and that this is ultimately the reason why the dilemma has no universal solution. Despite these difficulties, it is demonstrated that in the limit of no material absorption and under steady-state conditions, the time-averaged light (kinetic) momentum may be unambiguously determined by the Abraham result, both for bodies at rest and for circulatory flows of matter. The implications of these findings are discussed in the context of quantum optics of moving media, and we examine in detail the fundamental role of the Minkowski momentum in such a context.

DOI

Adhesion force and attachment lifetime of the KIF16B-PX domain interaction with lipid membranes

Serapion Pyrpassopoulos, Henry Shuman, and E. Michael Ostap

KIF16B is a highly processive kinesin-3 family member that participates in the trafficking and tubulation of early endosomes along microtubules. KIF16B attaches to lipid cargos via a PX motif at its C-terminus, which has nanomolar affinity for bilayers containing phosphatidylinositol-3-phosphate (PI(3)P). As the PX domain has been proposed to be a primary mechanical anchor for the KIF16B-cargo attachment, we measured the adhesion forces and detachment kinetics of the PX domain as it interacts with membranes containing 2% PI(3)P and 98% phosphatidylcholine. Using optical tweezers, we found that the adhesion strength of a single PX domain ranged between 19 and 54 pN at loading rates between 80 and 1500 pN/s. These forces are substantially larger than the interaction of the adhesion of a pleckstrin homology domain with phosphatidylinositol 4,5-bisphosphate. This increased adhesion is the result of the membrane insertion of hydrophobic residues adjacent to the PI(3)P binding site, in addition to electrostatic interactions with PI(3)P. Attachment lifetimes under load decrease monotonically with force, indicating slip-bond behavior. However, the lifetime of membrane attachment under load appears to be well matched to the duration of processive motility of the KIF16B motor, indicating the PX domain is a suitable mechanical anchor for intracellular transport.

DOI

Force, torque, linear momentum, and angular momentum in classical electrodynamics

Masud Mansuripur

The classical theory of electrodynamics is built upon Maxwell’s equations and the concepts of electromagnetic (EM) field, force, energy, and momentum, which are intimately tied together by Poynting’s theorem and by the Lorentz force law. Whereas Maxwell’s equations relate the fields to their material sources, Poynting’s theorem governs the flow of EM energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. An alternative force law, first proposed by Einstein and Laub, exists that is consistent with Maxwell’s equations and complies with the conservation laws as well as with the requirements of special relativity. While the Lorentz law requires the introduction of hidden energy and hidden momentum in situations where an electric field acts on a magnetized medium, the Einstein–Laub (E–L) formulation of EM force and torque does not invoke hidden entities under such circumstances. Moreover, total force/torque exerted by EM fields on any given object turns out to be independent of whether the density of force/torque is evaluated using the law of Lorentz or that of Einstein and Laub. Hidden entities aside, the two formulations differ only in their predicted force and torque distributions inside matter. Such differences in distribution are occasionally measurable, and could serve as a guide in deciding which formulation, if either, corresponds to physical reality.

DOI

Trapping of Micro Particles in Nanoplasmonic Optical Lattice

Dinesh Bhalothia, Ya-Tang Yang

The plasmonic optical tweezer has been developed to overcome the diffraction limits of the conventional far field optical tweezer. Plasmonic optical lattice consists of an array of nanostructures, which exhibit a variety of trapping and transport behaviors. We report the experimental procedures to trap micro-particles in a simple square nanoplasmonic optical lattice. We also describe the optical setup and the nanofabrication of a nanoplasmonic array. The optical potential is created by illuminating an array of gold nanodiscs with a Gaussian beam of 980 nm wavelength, and exciting plasmon resonance. The motion of particles is monitored by fluorescence imaging. A scheme to suppress photothermal convection is also described to increase usable optical power for optimal trapping. Suppression of convection is achieved by cooling the sample to a low temperature, and utilizing the near-zero thermal expansion coefficient of a water medium. Both single particle transport and multiple particle trapping are reported here.

DOI

Friday, October 27, 2017

Mode-selective thermal radiation from a microsphere as a probe of optical properties of high-temperature materials

R. Morino, H. Tajima, H. Sonoda, H. Kobayashi, R. Kanamoto, H. Odashima, and M. Tachikawa
Our spectroscopic method using laser trapping and heating has demonstrated that thermal emission from a metal oxide microsphere is enhanced at frequencies resonant with the whispering gallery modes of the spherical resonator. Only a mode series of a specific order effectively emits thermal photons, and spectral peaks shift from higher-order whispering gallery modes to fundamental whispering gallery modes as the size parameter decreases. These spectral profiles are analyzed with the Mie scattering theory and a semiclassical rate-equation model. The observed mode selectivity in thermal radiation is attributed to a matching between the rates of cavity damping and internal absorption. Excellent reproducibility of the observed spectral profiles leads to a precise determination of optical constants of extremely hot materials.

DOI

Circularly symmetric frozen waves: Vector approach for light scattering calculations

Leonardo André Ambrosio

This work introduces particular classes of vector wave fields for light scattering calculations, viz. structured light fields composed of specific superpositions of circularly symmetric Bessel beams of arbitrary order. Also known as generalized frozen waves, such beams carry all the non-diffracting properties of their constituents with the additional feature of allowing for an arbitrary design of the longitudinal intensity pattern along the surface of several cylinders of fixed radius, simultaneously. This feature makes the generalized frozen waves especially suitable for optical confinement and manipulation and atom guiding and selection. In the framework of the generalized Lorenz–Mie theory, the beam shape coefficients which describe such beams are evaluated in exact and analytic form, the resulting expressions being then applied in light scattering problems. Particular frozen waves are considered beyond the paraxial approximation, optical forces being calculated for specific dielectric Rayleigh particles.

DOI

Local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator for three-dimensional microfabrication

Toshiki Matsuura, Takanari Takai and Futoshi Iwata

We describe a novel three-dimensional fabrication technique using local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator (SLM). In a solution containing nanometer-scale colloidal Au particles, multiple laser spots formed on a conductive substrate by the SLM gathered the nanoparticles together, and then the nanoparticles were electrophoretically deposited onto the substrate by an applied electrical field. However, undesirable sub-spots often appeared due to optical interference from the multiple laser spots, which deteriorated the accuracy of the deposition. To avoid the appearance of undesirable sub-spots, we proposed a method using quasi-multiple spots, which we realized by switching the position of a single spot briefly using the SLM. The method allowed us to deposit multiple dots on the substrate without undesirable sub-dot deposition. By moving the substrate downward during deposition, multiple micro-pillar structures could be fabricated. As a fabrication property, the dependence of the pillar diameter on laser intensity was investigated by changing the number of laser spots. The smallest diameter of the four pillars fabricated in this study was 920 nm at the laser intensity of 2.5 mW. To demonstrate the effectiveness of the method, multiple spiral structures were fabricated. Quadruple spirals of 46 µm in height were successfully fabricated with a growth rate of 0.21 µm/s using 2200 frames of the CGH patterns displayed in the SLM at a frame rate of 10 fps.

DOI

Optical forces through the effective refractive index

Janderson R. Rodrigues and Vilson R. Almeida

Energy-based methods such as the dispersion relation (DR) and response theory of optical forces (RTOF) have been largely applied to obtain the optical forces in the nano-optomechanical devices, in contrast to the Maxwell stress tensor (MST). In this Letter, we apply first principles to show explicitly why these methods must agree with the MST formalism in linear lossless systems. We apply the RTOF multi-port to show that the optical force expression on these devices can be extended to analyze multiple light sources, broadband sources, and multimode devices, with multiple degrees of freedom. We also show that the DR method, when expressed as a function of the derivative of the effective index performed at a fixed wave vector, may be misinterpreted and lead to overestimated results.

DOI

Optical trapping of Au-Fe alloyed nanoparticles: a theoretical calculation

Ebrahim Madadi

Magnetoplasmonic nanoparticles such as Au-Fe alloys
 are very intersting for their properties. In this article, the 
 optical trapping of Au-Fe nanoparticles
 are investigated as a function of Fe atomic percent doped in 
 gold nanoparticles, theoretically.
 Using Lorenz-Mie theory it is shown that the maximum force
 exerted on the alloyed nanoparticles enhances about $75\%$ 
 with increaseing Fe atomic percent. It is shown that
 trapping strength is depth-dependent and shows $20\%$ increment 
 in shallow positions and $17\%$ decrement
 in the axial direction in the optimal depth which
 is $7\mu m$ deep inside the sample.
 Wavelength dependence of alloyed nanoparticles is studied, too.

DOI

On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films

Punnag Padhy, Mohammad Asif Zaman, Paul Hansen, and Lambertus Hesselink

Nanoparticles trapped on resonant near-field apertures/engravings carved in plasmonic films experience optical forces due to the steep intensity gradient field of the aperture/engraving as well as the image like interaction with the substrate. For non-resonant nanoparticles the contribution of the substrate interaction to the trapping force in the vicinity of the trap (aperture/engraving) mode is negligible. But, in the case of plasmonic nanoparticles, the contribution of the substrate interaction to the low frequency stable trapping mode of the coupled particle-trap system increases as their resonance is tuned to the trap resonance. The strength of the substrate interaction depends on the height of the nanoparticle above the substrate. As a result, a difference in back action mechanism arises for nanoparticle displacements perpendicular to the substrate and along it. For nanoparticle displacements perpendicular to the substrate, the self induced back action component of the trap force arises due to changing interaction with the substrate as well as the trap. On the other hand, for displacements along the substrate, it arises solely due to the changing interaction with the trap. This additional contribution of the substrate leads to more pronounced back action. Numerical simulation results are presented to illustrate these effects using a bowtie engraving as the near-field trap and a nanorod as the trapped plasmonic nanoparticle. The substrate’s role may be important in manipulation of plasmonic nanoparticles between successive traps of on-chip optical conveyor belts, because they have to traverse over regions of bare substrate while being handed off between these traps.

DOI

Tuesday, October 24, 2017

Native kinesin-1 does not bind preferentially to GTP-tubulin-rich microtubules in vitro

Qiaochu Li, Stephen J. King, Jing X

Molecular motors such as kinesin-1 work in small teams to actively shuttle cargos in cells, for example in polarized transport in axons. Here, we examined the potential regulatory role of the nucleotide state of tubulin on the run length of cargos carried by multiple kinesin motors, using an optical trapping-based in vitro assay. Based on a previous report that kinesin binds preferentially to GTP-tubulin-rich microtubules, we anticipated that multiple-kinesin cargos would run substantially greater distances along GMPCPP microtubules than along GDP microtubules. Surprisingly, we did not uncover any significant differences in run length between microtubule types. A combination of single-molecule experiments, comparison with previous theory, and classic microtubule affinity pulldown assays revealed that native kinesin-1 does not bind preferentially to GTP-tubulin-rich microtubules. The apparent discrepancy between our observations and the previous report likely reflects differences in post-translational modifications between the native motors used here and the recombinant motors examined previously. Future investigations will help shed light on the interplay between the motor's post-translational modification and the microtubule's nucleotide-binding state for transport regulation in vivo.

DOI

Bidirectional optical rotation of cells

Jiyi Wu, Weina Zhang, and Juan Li

Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

DOI

Kaleidoscopic patterning of micro-objects based on software-oriented approach using dual optical tweezers with a microlens array

Yoshio Tanaka

Dynamical and precise arrangement of micro-objects into the specified various pattern offers great flexibility and potential as platforms for many scientific applications, especially in bio-sensing and biomedical fields such as bio-MEMS and Lab-on-a-Chip. Multi-beam optical tweezers are one of the most suitable tools for assembling precise dynamic arrays of micro-objects. Herein, a dynamic patterning method based on software-oriented approach is proposed (i.e. time-shared scanning technique) using the dual optical tweezers with a microlens array. The proposed method can expand the patterning capability of this dual optical tweezers system to simply fabricate various quasi-periodic structures. The work also demonstrates kaleidoscopic patterning (periodic or symmetric arrangements such as Escher's paintings) of numerous microbeads and subsequent morphing. In the demonstrations, microbeads with different properties (size and colour) as well as homogeneous microbeads are arranged dynamically into the specified patterns, including their clusters.

DOI

Collective Force Regulation in Anti-parallel Microtubule Gliding by Dimeric Kif15 Kinesin Motors

Dana N.Reinemann, Emma G.Sturgill, Dibyendu KumarDas, Miriam Steiner Degen, Zsuzsanna Vörös, Wonmuk Hwang, Ryoma Ohi, Matthew J.Lang

During cell division, the mitotic kinesin-5 Eg5 generates most of the force required to separate centrosomes during spindle assembly. However, Kif15, another mitotic kinesin, can replace Eg5 function, permitting mammalian cells to acquire resistance to Eg5 poisons. Unlike Eg5, the mechanism by which Kif15 generates centrosome separation forces is unknown. Here we investigated the mechanical properties and force generation capacity of Kif15 at the single-molecule level using optical tweezers. We found that the non-motor microtubule-binding tail domain interacts with the microtubule’s E-hook tail with a rupture force higher than the stall force of the motor. This allows Kif15 dimers to productively and efficiently generate forces that could potentially slide microtubules apart. Using an in vitro optical trapping and fluorescence assay, we found that Kif15 slides anti-parallel microtubules apart with gradual force buildup while parallel microtubule bundles remain stationary with a small amount of antagonizing force generated. A stochastic simulation shows the essential role of Kif15’s tail domain for load storage within the Kif15-microtubule system. These results suggest a mechanism for how Kif15 rescues bipolar spindle assembly.

DOI

Membrane Mechanics Govern Spatiotemporal Heterogeneity of Endocytic Clathrin Coat Dynamics

N. M. Willy, J. P. Ferguson, S. D. Huber, S. P. Heidotting, E. Aygün, S. A. Wurm, E. Johnston-Halperin, M. G. Poirier, and C. Kural

Dynamics of endocytic clathrin-coated structures can be remarkably divergent across different cell types, cells within the same culture, or even distinct surfaces of the same cell. The origin of this astounding heterogeneity remains to be elucidated. Here, we show that cellular processes associated with changes in effective plasma membrane tension induce significant spatiotemporal alterations in endocytic clathrin coat dynamics. Spatiotemporal heterogeneity of clathrin coat dynamics is also observed during morphological changes taking place within developing multicellular organisms. These findings suggest that tension gradients can lead to patterning and differentiation of tissues through mechanoregulation of clathrin-mediated endocytosis.

DOI

Kinesin and dynein mechanics: measurement methods and research applications

Zachary Abraham, Emma Hawley, Daniel Hayosh, Victoria Webster-Wood and Ozan Akkus

Motor proteins play critical roles in the normal function of cells and proper development of organisms. Among motor proteins, failings in the normal function of two types of proteins, kinesin and dynein, have been shown to lead many pathologies, including neurodegenerative diseases and cancers. As such, it is critical for researchers to understand the underlying mechanics and behaviors of these proteins, not only to shed light on how failures may lead to disease, but also to guide research towards novel treatment and nanoengineering solutions. To this end, many experimental techniques have been developed to measure the force and motility capabilities of these proteins. This review will: a) discuss such techniques, specifically microscopy, atomic force microscopy, optical trapping, and magnetic tweezers, and, b) the resulting nanomechanical properties of motor protein functions such as stalling force, velocity and dependence on ATP concentrations will be comparatively discussed. Additionally, this review will highlight the clinical importance of these proteins. Furthermore, as the understanding of the structure and function of motor proteins improves, novel applications are emerging in the field. Specifically, researchers have begun to modify the structure of existing proteins, thereby engineering novel elements to alter and improve native motor protein function, or even allow the motor proteins to perform entirely new tasks as parts of nanomachines. Kinesin and dynein are vital elements for the proper function of cells. While many exciting experiments have shed light on their function, mechanics, and applications, additional research is needed to completely understand their behavior.

DOI

Tuesday, October 10, 2017

Ionic effects on the temperature–force phase diagram of DNA

Sitichoke Amnuanpol

Double-stranded DNA (dsDNA) undergoes a structural transition to single-stranded DNA (ssDNA) in many biologically important processes such as replication and transcription. This strand separation arises in response either to thermal fluctuations or to external forces. The roles of ions are twofold, shortening the range of the interstrand potential and renormalizing the DNA elastic modulus. The dsDNA-to-ssDNA transition is studied on the basis that dsDNA is regarded as a bound state while ssDNA is regarded as an unbound state. The ground state energy of DNA is obtained by mapping the statistical mechanics problem to the imaginary time quantum mechanics problem. In the temperature–force phase diagram the critical force Fc(T) increases logarithmically with the Na+ concentration in the range from 32 to 110 mM. Discussing this logarithmic dependence of Fc(T) within the framework of polyelectrolyte theory, it inevitably suggests a constraint on the difference between the interstrand separation and the length per unit charge during the dsDNA-to-ssDNA transition.

DOI

Actin and microtubule networks contribute differently to cell response for small and large strains

H Kubitschke, J Schnauss, K D Nnetu, E Warmt, R Stange and J Kaes

Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell's response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.

DOI

Integrated Method to Attach DNA Handles and Functionally Select Proteins to Study Folding and Protein-Ligand Interactions with Optical Tweezers

Yuxin Hao, Clare Canavan, Susan S. Taylor & Rodrigo A. Maillard

Optical tweezers has emerged as a powerful tool to study folding, ligand binding, and motor enzymes. The manipulation of proteins with optical tweezers requires attaching molecular handles to the protein of interest. Here, we describe a novel method that integrates the covalent attachment of DNA handles to target proteins with a selection step for functional and properly folded molecules. In addition, this method enables obtaining protein molecules in different liganded states and can be used with handles of different lengths. We apply this method to study the cAMP binding domain A (CBD-A) of Protein kinase A. We find that the functional selection step drastically improves the reproducibility and homogeneity of the single molecule data. In contrast, without a functional selection step, proteins often display misfolded conformations. cAMP binding stabilizes the CBD-A against a denaturing force, and increases the folded state lifetime. Data obtained with handles of 370 and 70 base pairs are indistinguishable, but at low forces short handles provide a higher spatial resolution. Altogether, this method is flexible, selects for properly folded molecules in different liganded states, and can be readily applicable to study protein folding or protein-ligand interactions with force spectroscopy that require molecular handles.

DOI

Submicrometer-sized nonspherical particle separation by laser beam

Jaromír Petržala, Miroslav Kocifaj, Ladislav Kómar, and Alexandre Simoneau

The radiation pressure exerted on sub-micrometer-size particles is shown to be an important factor predetermining the impact coordinates of the particles after being illuminated by a laser beam. Unlike spherical particles, the nonspherical ones can be deflected perpendicularly to the beam direction if the momentum transfer from the laser beam to a particle is large enough. Such an optical sorting is a useful technology, which can be used to isolate spherules of a specific size from a population of particles of random sizes and shapes. The system of ideal spheres has a wide range of applications in industry and also in the development of targeted optical devices, and so the methods for fast contact-less particle separation are expected to lead to considerable progress in the field. The theoretical model we have developed is demonstrated in a set of numerical experiments on metallic and nonmetallic particles.

DOI

Protein Folding Mediated by Trigger Factor and Hsp70: New Insights from Single-Molecule Approaches

Florian Wruck, Mario J.Avellaneda, Eline J.Koers, David P. Minde, Matthias P. Mayer, Günter Kramer, Alireza Mashaghi, Sander J.Tans

Chaperones assist in protein folding, but what this common phrase means in concrete terms has remained surprisingly poorly understood. We can readily measure chaperone binding to unfolded proteins, but how they bind and affect proteins along folding trajectories has remained obscure. Here we review recent efforts by our labs and others that are beginning to pry into this issue, with a focus on the chaperones trigger factor and Hsp70. Single-molecule methods are central, as they allow the stepwise process of folding to be followed directly. First results have already revealed contrasts with long-standing paradigms: rather than acting only “early” by stabilizing unfolded chain segments, these chaperones can bind and stabilize partially folded structures as they grow to their native state. The findings suggest a fundamental redefinition of the protein folding problem and a more extensive functional repertoire of chaperones than previously assumed.

DOI

Wednesday, October 4, 2017

Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks

Zhaokai Meng, Teena Thakur, Chandani Chitrakar, Manish K. Jaiswal, Akhilesh K. Gaharwar, and Vladislav V. Yakovlev

Our current understanding of the mechanical properties of nanostructured biomaterials is rather limited to invasive/destructive and low-throughput techniques such as atomic force microscopy, optical tweezers, and shear rheology. In this report, we demonstrate the capabilities of recently developed dual Brillouin/Raman spectroscopy to interrogate the mechanical and chemical properties of nanostructured hydrogel networks. The results obtained from Brillouin spectroscopy show an excellent correlation with the conventional uniaxial and shear mechanical testing. Moreover, it is confirmed that, unlike the macroscopic conventional mechanical measurement techniques, Brillouin spectroscopy can provide the elasticity characteristic of biomaterials at a mesoscale length, which is remarkably important for understanding complex cell–biomaterial interactions. The proposed technique experimentally demonstrated the capability of studying biomaterials in their natural environment and may facilitate future fabrication and inspection of biomaterials for various biomedical and biotechnological applications.

DOI

Polarization-Induced Chirality in Metamaterials via Optomechanical Interaction

Mingkai Liu, David A. Powell, Rui Guo, Ilya V. Shadrivov and Yuri S. Kivshar

A novel type of metamaterial is introduced, where the structural symmetry can be controlled by optical forces. Since symmetry sets fundamental bounds on the optical response, symmetry breaking changes the properties of metamaterials qualitatively over the entire resonant frequency band. This is achieved by a polarized pump beam, exerting optical forces which are not constrained by the structural symmetry. This new concept is illustrated for a metasurface composed of zig-zag chains of dipole meta-atoms, in which a highly asymmetric optical force exists for an appropriate incident polarization. The effect is employed to transform a planar achiral metasurface into a stereoscopic chiral structure. Importantly, the handedness of the induced chirality can be actively switched by changing the incident polarization. The proposed concept can be employed to achieve dynamic spatial control of metamaterials and metasurfaces at infrared and optical frequencies with subwavelength resolution.

DOI

Opto-thermophoretic assembly of colloidal matter

Linhan Lin, Jianli Zhang, Xiaolei Peng, Zilong Wu, Anna C. H. Coughlan, Zhangming Mao, Michael A. Bevan and Yuebing Zheng

Colloidal matter exhibits unique collective behaviors beyond what occurs at single-nanoparticle and atomic scales. Treating colloidal particles as building blocks, researchers are exploiting new strategies to rationally organize colloidal particles into complex structures for new functions and devices. Despite tremendous progress in directed assembly and self-assembly, a truly versatile assembly technique without specific functionalization of the colloidal particles remains elusive. We develop a new strategy to assemble colloidal matter under a light-controlled temperature field, which can solve challenges in the existing assembly techniques. By adding an anionic surfactant (that is, cetyltrimethylammonium chloride), which serves as a surface charge source, a macro ion, and a micellar depletant, we generate a light-controlled thermoelectric field to manipulate colloidal atoms and a depletion attraction force to assemble the colloidal atoms into two-dimensional (2D) colloidal matter. The general applicability of this opto-thermophoretic assembly (OTA) strategy allows us to build colloidal matter of diverse colloidal sizes (from subwavelength scale to micrometer scale) and materials (polymeric, dielectric, and metallic colloids) with versatile configurations and tunable bonding strengths and lengths. We further demonstrate that the incorporation of the thermoelectric field into the optical radiation force can achieve 3D reconfiguration of the colloidal matter. The OTA strategy releases the rigorous design rules required in the existing assembly techniques and enriches the structural complexity in colloidal matter, which will open a new window of opportunities for basic research on matter organization, advanced material design, and applications.

DOI

Repulsion–attraction switching of nematic colloids formed by liquid crystal dispersions of polygonal prisms

B. Senyuk, Q. Liu, P. D. Nystrom and I. I. Smalyukh

Self-assembly of colloidal particles due to elastic interactions in nematic liquid crystals promises tunable composite materials and can be guided by exploiting surface functionalization, geometric shape and topology, though these means of controlling self-assembly remain limited. Here, we realize low-symmetry achiral and chiral elastic colloids in the nematic liquid crystals using colloidal polygonal concave and convex prisms. We show that the controlled pinning of disclinations at the prism edges alters the symmetry of director distortions around the prisms and their orientation with respect to the far-field director. The controlled localization of the disclinations at the prism's edges significantly influences the anisotropy of the diffusion properties of prisms dispersed in liquid crystals and allows one to modify their self-assembly. We show that elastic interactions between polygonal prisms can be switched between repulsive and attractive just by controlled re-pinning the disclinations at different edges using laser tweezers. Our findings demonstrate that elastic interactions between colloidal particles dispersed in nematic liquid crystals are sensitive to the topologically equivalent but geometrically rich controlled configurations of the particle-induced defects.

DOI

Freezing shortens the lifetime of DNA molecules under tension

Wei-Ju Chung, Yujia Cui, Chi-Shuo Chen, Wesley H. Wei, Rong-Shing Chang, Wun-Yi Shu, Ian C. Hsu

DNA samples are commonly frozen for storage. However, freezing can compromise the integrity of DNA molecules. Considering the wide applications of DNA molecules in nanotechnology, changes to DNA integrity at the molecular level may cause undesirable outcomes. However, the effects of freezing on DNA integrity have not been fully explored. To investigate the impact of freezing on DNA integrity, samples of frozen and non-frozen bacteriophage lambda DNA were studied using optical tweezers. Tension (5–35 pN) was applied to DNA molecules to mimic mechanical interactions between DNA and other biomolecules. The integrity of the DNA molecules was evaluated by measuring the time taken for single DNA molecules to break under tension. Mean lifetimes were determined by maximum likelihood estimates and variances were obtained through bootstrapping simulations. Under 5 pN of force, the mean lifetime of frozen samples is 44.3 min with 95% confidence interval (CI) between 36.7 min and 53.6 min while the mean lifetime of non-frozen samples is 133.2 min (95% CI: 97.8–190.1 min). Under 15 pN of force, the mean lifetimes are 10.8 min (95% CI: 7.6–12.6 min) and 78.5 min (95% CI: 58.1–108.9 min). The lifetimes of frozen DNA molecules are significantly reduced, implying that freezing compromises DNA integrity. Moreover, we found that the reduced DNA structural integrity cannot be restored using regular ligation process. These results indicate that freezing can alter the structural integrity of the DNA molecules.

DOI

Ultrasensitive rotating photonic probes for complex biological systems

Shu Zhang, Lachlan J. Gibson, Alexander B. Stilgoe, Itia A. Favre-Bulle, Timo A. Nieminen, and Halina Rubinsztein-Dunlop

We use rotational photonic tweezers to access local viscoelastic properties of complex fluids over a wide frequency range. This is done by monitoring both passive rotational Brownian motion and also actively driven transient rotation between two angular trapping states of a birefringent microsphere. These enable measurement of high- and low-frequency properties, respectively. Complex fluids arise frequently in microscopic biological systems, typically with length scales at the cellular level. Thus, high spatial resolution as provided by rotational photonic tweezers is important. We measure the properties of tear film on a contact lens and demonstrate variations in these properties between two subjects over time. We also show excellent agreement between our theoretical model and experimental results. We believe that this is the first time that active microrheology using rotating tweezers has been used for biologically relevant questions. Our method demonstrates potential for future applications to determine the spatial-temporal properties of biologically relevant and complex fluids that are only available in very small volumes.

DOI

Tuesday, October 3, 2017

Physical Probing of Cells

Florian Rehfeldt and Christoph F Schmidt

In the last two decades, it has become evident that the mechanical properties of the microenvironment of biological cells are as important as traditional biochemical cues for the control of cellular behavior and fate. The field of cell and matrix mechanics is quickly growing and so is the development of the experimental approaches used to study active and passive mechanical properties of cells and their surroundings. Within this topical review we will provide a brief overview, on the one hand, over how cellular mechanics can be probed physically, how different geometries allow access to different cellular properties, and, on the other hand, how forces are generated in cells and transmitted to the extracellular environment. We will describe the following experimental techniques: atomic force microscopy, traction force microscopy, magnetic tweezers, optical stretcher and optical tweezers pointing out both their advantages and limitations. Finally, we give an outlook on the future of physical probing of cells.

DOI

Spectral identification in the attogram regime through laser-induced emission of single optically-trapped nanoparticles in air

Pablo Purohit, Francisco J. Fortes, Javier Laserna

Current trends in nanoengineering are bringing along new structures of diverse chemical compositions that need to be meticulously defined in order to ensure their correct operation. Few methods can provide the sensitivity required to carry out measurements on individual nano objects without tedious sample pre-treatment or data analysis. In the present study, we introduce a pathway for the elemental identification of single nanoparticles (NPs) that avoids suspension in liquid media by means of optical trapping and laser-induced plasma spectroscopy. We demonstrate spectroscopic detection and identification of individual 25 to 70 nm in diameter Cu NPs stably trapped in air featuring masses down to 73 attograms. We found an increase in the absolute number of photons produced as size of the particles decreased; pointing towards a more efficient excitation of ensembles of only 7e+5 Cu atoms in the onset plasma.

DOI

Plasmonic trapping of nanoparticles by metaholograms

Guanghao Rui, Yanbao Ma, Bing Gu, Qiwen Zhan & Yiping Cui
Manipulation of nanoparticles in solution is of great importance for a wide range of applications in biomedical, environmental, and material sciences. In this work, we present a novel plasmonic tweezers based on metahologram. We show that various kinds of nanoparticles can be stably trapped in a surface plasmon (SP) standing wave generated by the constructive interference between two coherent focusing SPs. The absence of the axial scattering force and the enhanced gradient force enable to avoid overheating effect while maintaining mechanical stability even under the resonant condition of the metallic nanoparticle. The work illustrates the potential of such plasmonic tweezers for further development in lab-on-a-chip devices.

DOI

Label-Free Detection of Bacillus anthracis Spore Uptake in Macrophage Cells Using Analytical Optical Force Measurements

Colin G. Hebert, Sean Hart, Tomasz A. Leski, Alex Terray, and Qin Lu

Understanding the interaction between macrophage cells and Bacillus anthracis spores is of significant importance with respect to both anthrax disease progression, spore detection for biodefense, as well as understanding cell clearance in general. While most detection systems rely on specific molecules, such as nucleic acids or proteins and fluorescent labels to identify the target(s) of interest, label-free methods probe changes in intrinsic properties, such as size, refractive index, and morphology, for correlation with a particular biological event. Optical chromatography is a label free technique that uses the balance between optical and fluidic drag forces within a microfluidic channel to determine the optical force on cells or particles. Here we show an increase in the optical force experienced by RAW264.7 macrophage cells upon the uptake of both microparticles and B. anthracis Sterne 34F2 spores. In the case of spores, the exposure was detected in as little as 1 h without the use of antibodies or fluorescent labels of any kind. An increase in the optical force was also seen in macrophage cells treated with cytochalasin D, both with and without a subsequent exposure to spores, indicating that a portion of the increase in the optical force arises independent of phagocytosis. These results demonstrate the capability of optical chromatography to detect subtle biological differences in a rapid and sensitive manner and suggest future potential in a range of applications, including the detection of biological threat agents for biodefense and pathogens for the prevention of sepsis and other diseases.

DOI

Fabrication and application of a non-contact double-tapered optical fiber tweezers

Z.L. Liu, Y.X. Liu, Y. Tang, N. Zhang, F.P. Wu, and B. Zhang

A double-tapered optical fiber tweezers (DOFTs) was fabricated by a chemical etching called interfacial layer etching. In this method, the second taper angle (STA) of DOFTs can be controlled easily by the interfacial layer etching time. Application of the DOFTs to the optical trapping of the yeast cells was presented. Effects of the STA on the axile trapping efficiency and the trapping position were investigated experimentally and theoretically. The experimental results are good agreement with the theoretical ones. The results demonstrated that the non-contact capture can be realized for the large STA (e.g. 90 deg) and there was an optimal axile trapping efficiency as the STA increasing. In order to obtain a more accurate measurement result of the trapping force, a correction factor to Stokes drag coefficient was introduced. This work provided a way of designing and fabricating an optical fiber tweezers (OFTs) with a high trapping efficient or a non-contact capture.

DOI

Measurement of pH-dependent surface-enhanced hyper-Raman scattering at desired positions on yeast cells via optical trapping

Yasutaka Kitahama, Hiroaki Hayashi, Tamitake Itoh and Yukihiro Ozaki

Surface-enhanced hyper-Raman scattering (SEHRS) spectra were obtained at desired positions on yeast by focusing a continuous wave near-infrared laser beam while silver nanoparticles (AgNPs) were simultaneously optically trapped. However, the optically trapped colloidal AgNP suspension bubbled up at the focusing point, preventing spectral measurement. In the case of optically trapped AgNPs functionalized with 4-mercaptobenzoic acid (p-MBA), surface-enhanced hyper-Rayleigh scattering was considerably strong, indicating the suppression of the photothermal conversion to form the bubble. Interestingly, the SEHRS peaks that are attributed not only to p-MBA, but also to other species, were very occasionally observed. They may be partly assigned to the β1,3 glucan and protein amide II band. The SEHRS peak at 1366 cm−1 was barely visible in the measurements of conventional baker's yeast even in the suspension (pH 9) despite the effects of high pH on p-MBA. In contrast, the SEHRS peak in the measurements of yeast for biological applications was occasionally observed at 1366 cm−1. This suggests that acidity is correlated with fermentation efficiency. At different positions on single yeast cells, the intensity of the SEHRS peak at 1366 cm−1 varied. This result represents the pH distribution on yeast.

DOI

Friday, September 29, 2017

Adaptive Response of Actin Bundles under Mechanical Stress

Florian Rückerl, Martin Lenz, Timo Betz, John Manzi, Jean-Louis Martiel, Mahassine Safouane, Rajaa Paterski-Boujemaa, Laurent Blanchoin, Cécile Sykes
Actin is one of the main components of the architecture of cells. Actin filaments form different polymer networks with versatile mechanical properties that depend on their spatial organization and the presence of cross-linkers. Here, we investigate the mechanical properties of actin bundles in the absence of cross-linkers. Bundles are polymerized from the surface of mDia1-coated latex beads, and deformed by manipulating both ends through attached beads held by optical tweezers, allowing us to record the applied force. Bundle properties are strikingly different from the ones of a homogeneous isotropic beam. Successive compression and extension leads to a decrease in the buckling force that we attribute to the bundle remaining slightly curved after the first deformation. Furthermore, we find that the bundle is solid, and stiff to bending, along the long axis, whereas it has a liquid and viscous behavior in the transverse direction. Interpretation of the force curves using a Maxwell visco-elastic model allows us to extract the bundle mechanical parameters and confirms that the bundle is composed of weakly coupled filaments. At short times, the bundle behaves as an elastic material, whereas at long times, filaments flow in the longitudinal direction, leading to bundle restructuring. Deviations from the model reveal a complex adaptive rheological behavior of bundles. Indeed, when allowed to anneal between phases of compression and extension, the bundle reinforces. Moreover, we find that the characteristic visco-elastic time is inversely proportional to the compression speed. Actin bundles are therefore not simple force transmitters, but instead, complex mechano-transducers that adjust their mechanics to external stimulation. In cells, where actin bundles are mechanical sensors, this property could contribute to their adaptability.

DOI

Enhanced optical confinement of dielectric nanoparticles by two-photon resonance transition

Aungtinee Kittiravechote, Anwar Usman, Hiroshi Masuhara and Ian Liau

Despite a tremendous success in the optical manipulation of microscopic particles, it remains a challenge to manipulate nanoparticles especially as the polarizability of the particles is small. With a picosecond-pulsed near-infrared laser, we demonstrated recently that the confinement of dye-doped polystyrene nanobeads is significantly enhanced relative to bare nanobeads of the same dimension. We attributed the enhancement to an additional term of the refractive index, which results from two-photon resonance between the dopant and the optical field. The optical confinement is profoundly enhanced as the half-wavelength of the laser falls either on the red side, or slightly away from the blue side, of the absorption band of the dopant. In contrast, the ability to confine the nanobeads is significantly diminished as the half-wavelength of the laser locates either at the peak, or on the blue side, of the absorption band. We suggest that the dispersively shaped polarizability of the dopant near the resonance is responsible to the distinctive spectral dependence of the optical confinement of nanobeads. This work advances our understanding of the underlying mechanism of the enhanced optical confinement of doped nanoparticles with a near-infrared pulsed laser, and might facilitate future research that benefits from effective sorting of selected nanoparticles beyond the limitations of previous approaches.

DOI

Probing Photothermal Effects on Optically Trapped Gold Nanorods by Simultaneous Plasmon Spectroscopy and Brownian Dynamics Analysis

Daniel Andrén, Lei Shao, Nils Odebo Länk, Srdjan S. Aćimović, Peter Johansson, and Mikael Käll

Plasmonic gold nanorods are prime candidates for a variety of biomedical, spectroscopy, data storage, and sensing applications. It was recently shown that gold nanorods optically trapped by a focused circularly polarized laser beam can function as extremely efficient nanoscopic rotary motors. The system holds promise for applications ranging from nanofluidic flow control and nanorobotics to biomolecular actuation and analysis. However, to fully exploit this potential, one needs to be able to control and understand heating effects associated with laser trapping. We investigated photothermal heating of individual rotating gold nanorods by simultaneously probing their localized surface plasmon resonance spectrum and rotational Brownian dynamics over extended periods of time. The data reveal an extremely slow nanoparticle reshaping process, involving migration of the order of a few hundred atoms per minute, for moderate laser powers and a trapping wavelength close to plasmon resonance. The plasmon spectroscopy and Brownian analysis allows for separate temperature estimates based on the refractive index and the viscosity of the water surrounding a trapped nanorod. We show that both measurements yield similar effective temperatures, which correspond to the actual temperature at a distance of the order 10–15 nm from the particle surface. Our results shed light on photothermal processes on the nanoscale and will be useful in evaluating the applicability and performance of nanorod motors and optically heated nanoparticles for a variety of applications.

DOI

β1-Integrin-Mediated Adhesion Is Lipid-Bilayer Dependent

Seoyoung Son, George J. Moroney, Peter J.Butler

Integrin-mediated adhesion is a central feature of cellular adhesion, locomotion, and endothelial cell mechanobiology. Although integrins are known to be transmembrane proteins, little is known about the role of membrane biophysics and dynamics in integrin adhesion. We treated human aortic endothelial cells with exogenous amphiphiles, shown previously in model membranes, and computationally, to affect bilayer thickness and lipid phase separation, and subsequently measured single-integrin-molecule adhesion kinetics using an optical trap, and diffusion using fluorescence correlation spectroscopy. Benzyl alcohol (BA) partitions to liquid-disordered (Ld) domains, thins them, and causes the greatest increase in hydrophobic mismatch between liquid-ordered (Lo) and Ld domains among the three amphiphiles, leading to domain separation. In human aortic endothelial cells, BA increased β1-integrin-Arg-Gly-Asp-peptide affinity by 18% with a transition from single to double valency, consistent with a doubling of the molecular brightness of mCherry-tagged β1-integrins measured using fluorescence correlation spectroscopy. Accordingly, BA caused an increase in the size of focal-adhesion-kinase/paxillin-positive peripheral adhesions and reduced migration speeds as measured using wound-healing assays. Vitamin E, which thickens Lo domains and disperses them by lowering edge energy on domain boundaries, left integrin affinity unchanged but reduced binding probability, leading to smaller focal adhesions and equivalent migration speed relative to untreated cells. Vitamin E reversed the BA-induced decrease in migration speed. Triton X-100 also thickens Lo domains, but partitions to both lipid phases and left unchanged binding kinetics, focal adhesion sizes, and migration speed. These results demonstrate that only the amphiphile that thinned Ld lipid domains increased β1-integrin-Arg-Gly-Asp-peptide affinity and valency, thus implicating Ld domains in modulation of integrin adhesion, nascent adhesion formation, and cell migration.

DOI

Enhancing Upconversion Fluorescence with a Natural Bio-microlens

Yuchao Li, Xiaoshuai Liu, Xianguang Yang, Hongxiang Lei, Yao Zhang, and Baojun Li

Upconversion fluorescence has triggered extensive efforts in the past decade because of its superior physicochemical features and great potential in biomedical and biophotonic studies. However, practical applications of upconversion fluorescence are often hindered by its relatively low luminescence efficiency (<1%). Here, we employ a living yeast or human cell as a natural bio-microlens to enhance the upconversion fluorescence. The natural bio-microlens, which was stably trapped on a fiber probe, could concentrate the excitation light into a subwavelength region so that the upconversion fluorescence of core–shell NaYF4:Yb3+/Tm3+ nanoparticles was enhanced by 2 orders of magnitude. As a benefit of the fluorescence enhancement, single-cell imaging and real-time detection of the labeled pathogenic bacteria, such as Escherichia coli and Staphylococcus aureus, were successfully achieved in the dark fields. This biocompatible, sensitive, and miniature approach could provide a promising powerful tool for biological imaging, biophotonic sensing, and single-cell analysis.

DOI

Optical Force Enhancement Using an Imaginary Vector Potential for Photons

Lana Descheemaeker, Vincent Ginis, Sophie Viaene, and Philippe Tassin

The enhancement of optical forces has enabled a variety of technological applications that rely on the optical control of small objects and devices. Unfortunately, optical forces are still too small for the convenient actuation of integrated switches and waveguide couplers. Here we show how the optical gradient force can be enhanced by an order of magnitude by making use of gauge materials inside two evanescently coupled waveguides. To this end, the gauge materials inside the cores should emulate imaginary vector potentials for photons pointing perpendicularly to the waveguide plane. Depending on the relative orientation of the vector potentials in neighboring waveguides, i.e., pointing away from or towards each other, the conventional attractive force due to an even mode profile may be enhanced, suppressed, or may even become repulsive. This and other new features indicate that the implementation of complex-valued vector potentials with non-Hermitian waveguide cores may further enhance our control over mode profiles and the associated optical forces.

DOI

Thursday, September 21, 2017

Mitotic tethers connect sister chromosomes and transmit “cross-polar” force during anaphase A of mitosis in PtK2 cells

Matthew Ono, Daryl Preece, Michelle L. Duquette, Arthur Forer, and Michael W. Berns

Originally described in crane-fly spermatocytes, tethers physically link and transmit force between the ends of separating chromosomes. Optical tweezers and laser scissors were used to sever the tether between chromosomes, create chromosome fragments attached to the tether which move toward the opposite pole, and to trap the tethered fragments. Laser microsurgery in the intracellular space between separating telomeres reduced chromosome strain in half of tested chromosome pairs. When the telomere-containing region was severed from the rest of the chromosome body, the resultant fragment either traveled towards the proper pole (poleward), towards the sister pole (cross-polar), or movement ceased. Fragment travel towards the sister pole varied in distance and always ceased following a cut between telomeres, indicating the tether is responsible for transferring a cross-polar force to the fragment. Optical trapping of cross-polar traveling fragments places an upper boundary on the tethering force of ~1.5 pN.

DOI

All-dielectric structure for trapping nanoparticles via light funneling and nanofocusing

Amir M. Jazayeri and Khashayar Mehrany

We propose a dielectric structure which focuses laser light well beyond the diffraction limit and thus considerably enhances the exerted optical trapping force upon dielectric nanoparticles. Although the structure supports a Fabry–Perot resonance, it actually acts as a nanoantenna in that the role of the resonance is to funnel the laser light into the structure. In comparison with the lens illuminating the structure, the proposed structure offers roughly a 10,000-fold enhancement in the trapping force—part of this enhancement comes from an 80-fold enhancement in the field intensity, whereas the remaining comes from a 130-fold enhancement in the normalized gradient of the field intensity (viz., the gradient of the field intensity divided by the field intensity). Also, the proposed structure offers roughly a 100-fold enhancement in the depth of the trapping potential. It is noteworthy that “self-induced back-action trapping” (SIBA), which has recently been the focus of interest in the context of optical resonators, does not take place in the proposed resonator. In this paper, we also point out some misconceptions about SIBA together with some hitherto unappreciated subtleties of the dipole approximation.

DOI