.

Monday, September 18, 2017

Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles

Julián Gargiulo, Ianina L. Violi, Santiago Cerrota, Lukáš Chvátal, Emiliano Cortés, Eduardo M. Perassi, Fernando Diaz, Pavel Zemánek, and Fernando D. Stefani

Optical printing is a powerful all-optical method that allows the incorporation of colloidal nanoparticles (NPs) onto substrates with nanometric precision. Here, we present a systematic study of the accuracy of optical printing of Au and Ag NPs, using different laser powers and wavelengths. When using light of wavelength tuned to the localized surface plasmon resonance (LSPR) of the NPs, the accuracy improves as the laser power is reduced, whereas for wavelengths off the LSPR, the accuracy is independent of the laser power. Complementary studies of the printing times of the NPs reveal the roles of Brownian and deterministic motion. Calculated trajectories of the NPs, taking into account the interplay between optical forces, electrostatic forces, and Brownian motion, allowed us to rationalize the experimental results and gain a detailed insight into the mechanism of the printing process. A clear framework is laid out for future optimizations of optical printing and optical manipulation of NPs near substrates.

DOI

Rigorous full-wave calculation of optical forces on dielectric and metallic microparticles immersed in a vector Airy beam

Wanli Lu, Huajin Chen, Shiyang Liu, and Zhifang Lin

Based on the generalized Lorenz-Mie theory and the Maxwell stress tensor approach we present the first rigorous full-wave solution of the optical forces acting on spherical microparticles immersed in a two-dimensional vector Airy beam beyond the paraxial approximation. The critical aspect lies in evaluating efficiently and accurately the partial wave expansion coefficients of the incident Airy beam, which are achieved by using the vector angular spectrum representation for a variety of polarizations. The optical field distributions are then simulated to show the self-accelerating and self-healing effects of the Airy beam. The dielectric and gold microparticles are shown to be trapped within the main lobe or the nearby side-lobes mostly by the transverse gradient optical force while driven forward along the parabolic trajectory of the Airy beam by the longitudinal scattering force. It is thus demonstrated theoretically that the vector Airy beam has the capability of precisely transporting both dielectric and metallic microparticles along the prespecified curved paths.

DOI

Mechanical measurement of hydrogen bonded host–guest systems under non-equilibrium, near-physiological conditions

Teresa Naranjo, Fernando Cerrón, Belén Nieto-Ortega, Alfonso Latorre, Álvaro Somoza, Borja Ibarra and Emilio M. Pérez

Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host–guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor–cyanuric acid host–guest system is used as a test bed. The force required to dissociate the host–guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1–2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

DOI

Force spectroscopy unravels the role of ionic strength on DNA-cisplatin interaction: Modulating the binding parameters

L. Oliveira and M. S. Rocha

In the present work we have gone a step forward in the understanding of the DNA-cisplatin interaction, investigating the role of the ionic strength on the complexes formation. To achieve this task, we use optical tweezers to perform force spectroscopy on the DNA-cisplatin complexes, determining their mechanical parameters as a function of the drug concentration in the sample for three different buffers. From such measurements, we determine the binding parameters and study their behavior as a function of the ionic strength. The equilibrium binding constant decreases with the counterion concentration ([Na]) and can be used to estimate the effective net charge of cisplatin in solution. The cooperativity degree of the binding reaction, on the other hand, increases with the ionic strength, as a result of the different conformational changes induced by the drug on the double-helix when binding under different buffer conditions. Such results can be used to modulate the drug binding to DNA, by appropriately setting the ionic strength of the surrounding buffer. The conclusions drawn provide significant new insights on the complex cooperative interactions between the DNA molecule and the class of platinum-based compounds, much used in chemotherapies.

DOI

Membrane Tension: A Challenging But Universal Physical Parameter in Cell Biology

BrunoPontes, Pascale Monzo Nils C.Gauthier

The plasma membrane separates the interior of cells from the outside environment. The membrane tension, defined as the force per unit length acting on a cross-section of membrane, regulates many vital biological processes. In this review, we summarize the first historical findings and the latest advances, showing membrane tension as an important physical parameter in cell biology. We also discuss how this parameter must be better integrated and we propose experimental approaches for key unanswered questions.

DOI

Thursday, September 14, 2017

Force-activated DNA substrates for probing individual proteins interacting with single-stranded DNA

Stephen R. Okoniewski Lyle Uyetake Thomas T. Perkins

Single-molecule force spectroscopy provides insight into how proteins bind to and move along DNA. Such studies often embed a single-stranded (ss) DNA region within a longer double-stranded (ds) DNA molecule. Yet, producing these substrates remains laborious and inefficient, particularly when using the traditional three-way hybridization. Here, we developed a force-activated substrate that yields an internal 1000 nucleotide (nt) ssDNA region when pulled partially into the overstretching transition (∼65 pN) by engineering a 50%-GC segment to have no adjacent GC base pairs. Once the template was made, these substrates were efficiently prepared by polymerase chain reaction amplification followed by site-specific nicking. We also generated a more complex structure used in high-resolution helicase studies, a DNA hairpin adjacent to 33 nt of ssDNA. The temporally defined generation of individual hairpin substrates in the presence of RecQ helicase and saturating adenine triphosphate let us deduce that RecQ binds to ssDNA via a near diffusion-limited reaction. More broadly, these substrates enable the precise initiation of an important class of protein–DNA interactions.

DOI

Z-ring Structure and Constriction Dynamics in E. coli

Pramod Kumar, Amarjeet Yadav, Itzhak Fishov and Mario Feingold

The Z-ring plays a central role in bacterial division. It consists of FtsZ filaments, but the way these reorganize in the ring-like structure during septation remains largely unknown. Here, we measure the effective constriction dynamics of the ring. Using an oscillating optical trap, we can switch individual rod-shaped E. coli cells between horizontal and vertical orientations. In the vertical orientation, the fluorescent Z-ring image appears as a symmetric circular structure that renders itself to quantitative analysis. In the horizontal orientation, we use phase-contrast imaging to determine the extent of the cell constriction and obtain the effective time of division. We find evidence that the Z-ring constricts at a faster rate than the cell envelope such that its radial width (inwards from the cytoplasmic membrane) grows during septation. In this respect, our results differ from those recently obtained using photoactivated localization microscopy (PALM) where the radial width of the Z-ring was found to be approximately constant as the ring constricts. A possible reason for the different behavior of the constricting Z-rings could be the significant difference in the corresponding cell growth rates.

DOI

Accurate nanoscale flexibility measurement of DNA and DNA–protein complexes by atomic force microscopy in liquid

Divakaran Murugesapillai, Serge Bouaziz, L. James Maher, III, Nathan E. Israeloff, Craig E. Cameron and Mark C. Williams

The elasticity of double-stranded DNA (dsDNA), as described by its persistence length, is critical for many biological processes, including genomic regulation. A persistence length value can be obtained using atomic force microscopy (AFM) imaging. However, most AFM studies have been done by depositing the sample on a surface using adhesive ligands and fitting the contour to a two-dimensional (2D) wormlike chain (WLC) model. This often results in a persistence length measurement that is different from the value determined using bulk and single molecule methods. We describe a method for obtaining accurate three-dimensional (3D) persistence length measurements for DNA and DNA–protein complexes by using a previously developed liquid AFM imaging method and then applying the 3D WLC model. To demonstrate the method, we image in both air and liquid several different dsDNA constructs and DNA–protein complexes that both increase (HIV-1 Vpr) and decrease (yeast HMO1) dsDNA persistence length. Fitting the liquid AFM-imaging contour to the 3D WLC model results in a value in agreement with measurements obtained in optical tweezers experiments. Because AFM also allows characterization of local DNA properties, the ability to correctly measure global flexibility will strongly increase the impact of measurements that use AFM imaging.

DOI

Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap

Jamie Vovrosh, Muddassar Rashid, David Hempston, James Bateman, Mauro Paternostro, and Hendrik Ulbricht

Levitated optomechanics, a new experimental physics platform, holds promise for fundamental science and quantum technological sensing applications. We demonstrate a simple and robust geometry for optical trapping in vacuum of a single nanoparticle based on a parabolic mirror and the optical gradient force. We demonstrate parametric feedback cooling of all three motional degrees of freedom from room temperature to a few millikelvin. A single laser at 1550 nm and a single photodiode are used for trapping, position detection, and cooling for all three dimensions. Particles with diameters from 26 to 160 nm are trapped without feedback to 10−5 mbar10−5 mbar, and with feedback-engaged, the pressure is reduced to 10−6 mbar10−6 mbar. Modifications to the harmonic motion in the presence of noise and feedback are studied, and an experimental mechanical quality factor in excess of 4×1074×107 is evaluated. This particle manipulation is key to building a nanoparticle matter-wave interferometer in order to test the quantum superposition principle in the macroscopic domain.

DOI

Localized plasmonic structured illumination microscopy with optically trapped microlens

Anna Bezryadina, Jinxing Li, Junxiang Zhao, Alefia Kothambawala, Joseph Louis Ponsetto, Eric Huang, Joseph Wang and Zhaowei Liu

Localized plasmonic structured illumination microscopy (LPSIM) is a recently developed super resolution technique that demonstrates immense potential via arrays of localized plasmonic antennas. Microlens microscopy represents another distinct approach for improving resolution by introducing spherical lens with large refractive index to boost the effective numerical aperture of the imaging system. In this LetterPaper, we bridge together the LPSIM and optically trapped spherical microlenses, for the first time, to demonstrate a new super resolution technique for surface imaging. By trapping and moving polystyrene and TiO2 microspheres with optical tweezers on top of a LPSIM substrate, the new imaging system has achieved higher NA and resolution improvement.

DOI