Tuesday, November 21, 2017

Spin-Momentum Locking in the Near Field of Metal Nanoparticles

Claudia Triolo, Adriano Cacciola, Salvatore Patanè, Rosalba Saija, Salvatore Savasta, and Franco Nori

Light carries both spin and momentum. Spin–orbit interactions of light come into play at the subwavelength scale of nano-optics and nanophotonics, where they determine the behavior of light. These phenomena, in which the spin affects and controls the spatial degrees of freedom of light, are attracting rapidly growing interest. Here we present results on the spin-momentum locking in the near field of metal nanostructures supporting localized surface resonances. These systems can confine light to very small dimensions below the diffraction limit, leading to a striking near-field enhancement. In contrast to the propagating evanescent waves of surface plasmon-polariton modes, the electromagnetic near-field of localized surface resonances does not exhibit a definite position-independent momentum or polarization. Close to the particle, the canonical momentum is almost tangential to the particle surface and rotates when moving along the surface. The direction of this rotation can be controlled by the spin of the incident light.


Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals

A. T. M. Anishur Rahman & P. F. Barker

The ability to cool and manipulate levitated nanoparticles in vacuum is a promising tool for exploring macroscopic quantum mechanics1,2, precision measurements of forces3 and non-equilibrium thermodynamics4,5. The extreme isolation afforded by optical levitation offers a low-noise, undamped environment that has been used to measure zeptonewton forces3 and radiation pressure shot noise6, and to demonstrate centre-of-mass motion cooling7,8. Ground-state cooling and the creation of macroscopic quantum superpositions are now within reach, but control of both the centre of mass and internal temperature is required. While cooling the centre-of-mass motion to micro-kelvin temperatures has now been achieved, the internal temperature has remained at or above room temperature. Here, we realize a nanocryostat by refrigerating levitated Yb3+:YLF nanocrystals to 130 K using anti-Stokes fluorescence cooling, while simultaneously using the optical trapping field to align the crystal to maximize cooling.


Reverse orbiting and spinning of a Rayleigh dielectric spheroid in a J0 Bessel optical beam

F. G. Mitri

Based on the electric dipole approximation, numerical computations for the optical orbital and spin radiation torques induced by a zeroth-order Bessel beam on a lossless dielectric subwavelength spheroid with arbitrary orientation in space are performed. The transverse optical force components are determined first, and then used to compute the longitudinal orbital torque component. Moreover, the Cartesian components of the spin radiation torque vector are evaluated. Numerical calculations illustrate the analysis with particular emphasis on the beam parameters, polarization of the magnetic vector potential forming the beam, and aspect ratio of the spheroid. The results demonstrate that the lossless dielectric subwavelength spheroid becomes irresponsive to the transfer of angular momentum, where the longitudinal orbital and spin radiation torque components vanish along singularity lines. Moreover, depending on the beam parameters and the spheroid location in space, the longitudinal orbital and spin torque components reverse sign, indicating a direction of rotation around the central axis of the beam and center of mass of the spheroid, respectively, in either the counterclockwise or clockwise directions. The results are important in particle dynamics and trapping applications, optical tweezers and spanners, and other related fields.


Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects

Dongliang Gao, Weiqiang Ding, Manuel Nieto-Vesperinas, Xumin Ding, Mahdy Rahman, Tianhang Zhang, ChweeTeck Lim & Cheng-Wei Qiu

Since the invention of optical tweezers, optical manipulation has advanced significantly in scientific areas such as atomic physics, optics and biological science. Especially in the past decade, numerous optical beams and nanoscale devices have been proposed to mechanically act on nanoparticles in increasingly precise, stable and flexible ways. Both the linear and angular momenta of light can be exploited to produce optical tractor beams, tweezers and optical torque from the microscale to the nanoscale. Research on optical forces helps to reveal the nature of light–matter interactions and to resolve the fundamental aspects, which require an appropriate description of momenta and the forces on objects in matter. In this review, starting from basic theories and computational approaches, we highlight the latest optical trapping configurations and their applications in bioscience, as well as recent advances down to the nanoscale. Finally, we discuss the future prospects of nanomanipulation, which has considerable potential applications in a variety of scientific fields and everyday life.


Insights into Microalga and Bacteria Interactions of Selected Phycosphere Biofilms Using Metagenomic, Transcriptomic, and Proteomic Approaches

Ines Krohn-Molt, Malik Alawi, Konrad U. Förstner, Alena Wiegandt, Lia Burkhardt, Daniela Indenbirken, Melanie Thieß, Adam Grundhoff, Julia Kehr, Andreas Tholey and Wolfgang R. Streit

Microalga are of high relevance for the global carbon cycling and it is well-known that they are associated with a microbiota. However, it remains unclear, if the associated microbiota, often found in phycosphere biofilms, is specific for the microalga strains and which role individual bacterial taxa play. Here we provide experimental evidence that Chlorella saccharophila, Scenedesmus quadricauda, and Micrasterias crux-melitensis, maintained in strain collections, are associated with unique and specific microbial populations. Deep metagenome sequencing, binning approaches, secretome analyses in combination with RNA-Seq data implied fundamental differences in the gene expression profiles of the microbiota associated with the different microalga. Our metatranscriptome analyses indicates that the transcriptionally most active bacteria with respect to key genes commonly involved in plant–microbe interactions in the Chlorella (Trebouxiophyceae) and Scenedesmus (Chlorophyceae) strains belong to the phylum of the α-Proteobacteria. In contrast, in the Micrasterias (Zygnematophyceae) phycosphere biofilm bacteria affiliated with the phylum of the Bacteroidetes showed the highest gene expression rates. We furthermore show that effector molecules known from plant–microbe interactions as inducers for the innate immunity are already of relevance at this evolutionary early plant-microbiome level.


Optical Manipulation of nanoparticles by simultaneous electric and magnetic field enhancement within diabolo nanoantenna

Nyha Hameed, Ali Nouho Ali & Fadi I. Baida

In this paper, we propose and numerically simulate a novel optical trapping process based on the enhancement and the confinement of both magnetic and electric near-fields by using gold Diabolo Antenna (DA). The later was recently proposed to generate huge magnetic near-field when illuminated by linearly polarized wave along its axis. Numerical 3D – FDTD simulation results demonstrate the high confinement of the electromagnetic field in the vicinity of the DA. This enhancement is then exploited for the trapping of nano-particles (NP) as small as 30 nm radius. Results show that the trapping process greatly depends on the particle dimensions and that three different regimes of, trapping at contact, trapping without contact, or pushing can be achieved within the same DA. This doubly resonant structure opens the way to the design of a novel generation of efficient optical nano-tweezers that allow manipulation of nano-particles by simply changing the operation wavelength.


Monday, November 20, 2017

Strong Binding of Platelet Integrin αIIbβ3 to Fibrin Clots: Potential Target to Destabilize Thrombi

Peter Höök, Rustem I. Litvinov, Oleg V. Kim, Shixin Xu, Zhiliang Xu, Joel S. Bennett, Mark S. Alber & John W. Weisel
The formation of platelet thrombi is determined by the integrin αIIbβ3-mediated interactions of platelets with fibrinogen and fibrin. Blood clotting in vivo is catalyzed by thrombin, which simultaneously induces fibrinogen binding to αIIbβ3 and converts fibrinogen to fibrin. Thus, after a short time, thrombus formation is governed by αIIbβ3 binding to fibrin fibers. Surprisingly, there is little understanding of αIIbβ3 interaction with fibrin polymers. Here we used an optical trap-based system to measure the binding of single αIIbβ3 molecules to polymeric fibrin and compare it to αIIbβ3 binding to monomeric fibrin and fibrinogen. Like αIIbβ3 binding to fibrinogen and monomeric fibrin, we found that αIIbβ3 binding to polymeric fibrin can be segregated into two binding regimes, one with weaker rupture forces of 30–60 pN and a second with stronger rupture forces >60 pN that peaked at 70–80 pN. However, we found that the mechanical stability of the bimolecular αIIbβ3-ligand complexes had the following order: fibrin polymer > fibrin monomer > fibrinogen. These quantitative differences reflect the distinct specificity and underlying molecular mechanisms of αIIbβ3-mediated reactions, implying that targeting platelet interactions with fibrin could increase the therapeutic indices of antithrombotic agents by focusing on the destabilization of thrombi rather than the prevention of platelet aggregation.


Sharply Focused Azimuthally Polarized Beams with Magnetic Dominance: Near-Field Characterization at Nanoscale by Photoinduced Force Microscopy

Jinwei Zeng , Fei Huang, Caner Guclu, Mehdi Veysi, Mohammad Albooyeh, H. Kumar Wickramasinghe, and Filippo Capolino

Azimuthally polarized beams are gaining fundamental importance for near-field force microscopy systems to inspect photoinduced magnetism in special molecules or nanostructures, due to their strong axial magnetic field and vanishing electric field. The magnetic dominant region represents a unique trait of such a beam as a potentially ideal structured light to probe photoinduced magnetism at the nanoscale. Therefore, we present a near-field characterization of an optical, sharply focused azimuthally polarized beam using photoinduced force microscopy, a technique with simultaneous near-field excitation and detection, achieving nanoscale resolution well beyond the diffraction limit. Such a method exploits the photoinduced gradient force on a nanotip, mechanically detected as forced oscillations of the cantilever in an atomic force microscopy system upon external light illumination. The photoinduced force is strongly localized, which that depends only on the near-field signal free from background scattering photons, granting photoinduced force microscopy a superior performance over its precedent near-field scanning optical microscopy. We develop an analytical model to correct the tip-induced measurement anisotropy, suppress the background noise, and reveal the local electric field distribution of the azimuthally polarized beam. These measurements are used to retrieve its strong longitudinal axial magnetic field at the center of the polarization vortex where the electric field vanishes. This study can lead to a plethora of possibilities in optomechanical, chemical, or biomedical applications. We also propose and discuss how to use such beams with polarization azimuthal symmetry as a way to calibrate microscope nanotips.


Programming the mechanics of cohesive fiber networks by compression

Bart E. Vos, Luka C. Liebrand, Mahsa Vahabi, Andreas Biebricher, Gijs J. L. Wuite, Erwin J. G. Peterman, Nicholas A. Kurniawan, Fred C. MacKintosh and Gijsje H. Koenderink

Fibrous networks are ideal functional materials since they provide mechanical rigidity at low weight. Here, we demonstrate that fibrous networks of the blood clotting protein fibrin undergo a strong and irreversible increase in their mechanical rigidity in response to uniaxial compression. This rigidification can be precisely controlled by the level of applied compressive strain, providing a means to program the network rigidity without having to change its composition. To identify the underlying mechanism we measure single fiber–fiber interactions using optical tweezers. We further develop a minimal computational model of cohesive fiber networks that shows that stiffening arises due to the formation of new bonds in the compressed state, which develop tensile stress when the network is re-expanded. The model predicts that the network stiffness after a compression cycle obeys a power-law dependence on tensile stress, which we confirm experimentally. This finding provides new insights into how biological tissues can adapt themselves independently of any cellular processes, offering new perspectives to inspire the design of reprogrammable materials.


Optical trapping of nanoparticles with tunable inter-distance using a multimode slot cavity

Lin Wang, Yongyin Cao, Tongtong Zhu, Rei Feng, Fangkui Sun, and Weiqiang Ding

Optical trapping of nano-objects (i.e., the nano-tweezers) has been investigated intensively. Most of those nano-tweezers, however, were focused on the trapping of a single nanoparticle, while the interactions between them were seldom considered. In this work, we propose a nano-tweezers in a slot photonic crystal cavity supporting multiple modes, where the relative positions of two trapped nanoparticles can be tuned by selective excitation of different resonant mode. Results show that both the nanoparticles are trapped at the center of the cavity when the first order mode is excited. When the incident source is tuned to the second order mode, however, these two nanoparticles push each other and are trapped stably at two separated positions. Also, the inter-distance between them can be tuned precisely by changing the relative power of the two modes. This provides a potential method to control the interactions between two nano-objects via optically tuning the separation between them, and may have applications in various related disciplinary.