.

Monday, July 28, 2014

Microfluidic bio-particle manipulation for biotechnology

Barbaros Çetin, Mehmet Bülent Özer, Mehmet Ertuğrul Solmaz

Microfluidics and lab-on-a-chip technology offers unique advantages for the next generation devices for diagnostic therapeutic applications. For chemical, biological and biomedical analysis in microfluidic systems, there are some fundamental operations such as separation, focusing, filtering, concentration, trapping, detection, sorting, counting, washing, lysis of bio-particles, and PCR-like reactions. The combination of these operations led to the complete analysis systems for specific applications. Manipulation of the bio-particles is the key ingredient for these applications. Therefore, microfluidic bio-particle manipulation has attracted a significant attention from the academic community. Considering the size of the bio-particles and the throughput of the practical applications, manipulation of the bio-particles is a challenging problem. Different techniques are available for the manipulation of bio-particles in microfluidic systems. In this review, some of the techniques for the manipulation of bio-particles; namely hydrodynamic based, electrokinetic-based, acoustic-based, magnetic-based and optical-based methods have been discussed. The comparison of different techniques and the recent applications regarding the microfluidic bio-particle manipulation for different biotechnology applications are presented. Finally, challenges and the future research directions for microfluidic bio-particle manipulation are addressed.

DOI

Ultrafast polarization response of an optically-trapped single ferroelectric nanowire

Sanghee Nah , Yi-Hong Kuo , Frank Chen , Joonsuk Park , Robert Sinclair , and Aaron Lindenberg

One-dimensional potassium niobate nanowires are of interest as building blocks in integrated piezoelectric devices, exhibiting large nonlinear optical and piezoelectric responses. Here we present femtosecond measurements of light-induced polarization dynamics within an optically-trapped ferroelectric nanowire, using the second-order nonlinear susceptibility as a real-time structural probe. Large amplitude, reversible modulations of the nonlinear susceptibility are observed within single nanowires at megahertz repetition rates, developing on few-picosecond time-scales, associated with anomalous coupling of light into the nanowire.

DOI

Reflectivity and transmissivity of a cavity coupled to a nanoparticle

M. A. Khan, K. Farooq, S. C. Hou, Shanawer Niaz, X. X. Yi

Any dielectric nanoparticle moving inside an optical cavity generates an optomechanical interaction. In this paper, we theoretically analyze the light scattering of an optomechanical cavity which strongly interacts with a dielectric nanoparticle. The cavity is driven by an external laser field. This interaction gives rise to different dynamics that can be used to cool, trap and levitate nanoparticle. We analytically calculate reflection and transmission rate of the cavity field, and study the time evolution of the intracavity field, momentum and position of the nanoparticle. We find the nanoparticle occupies a discrete position inside the cavity. This effect can be exploited to separate nanoparticle and couplings between classical particles and quantized fields.

DOI

Sequence-resolved free energy profiles of stress-bearing vimentin intermediate filaments

Beatrice Ramm, Johannes Stiglera, Michael Hinczewski, D. Thirumalai, Harald Herrmann, Günther Woehlke, and Matthias Rief

Intermediate filaments (IFs) are key to the mechanical strength of metazoan cells. Their basic building blocks are dimeric coiled coils mediating hierarchical assembly of the full-length filaments. Here we use single-molecule force spectroscopy by optical tweezers to assess the folding and stability of coil 2B of the model IF protein vimentin. The coiled coil was unzipped from its N and C termini. When pulling from the C terminus, we observed that the coiled coil was resistant to force owing to the high stability of the C-terminal region. Pulling from the N terminus revealed that the N-terminal half is considerably less stable. The mechanical pulling assay is a unique tool to study and control seed formation and structure propagation of the coiled coil. We then used rigorous theory-based deconvolution for a model-free extraction of the energy landscape and local stability profiles. The data obtained from the two distinct pulling directions complement each other and reveal a tripartite stability of the coiled coil: a labile N-terminal half, followed by a medium stability section and a highly stable region at the far C-terminal end. The different stability regions provide important insight into the mechanics of IF assembly.

DOI

Note: Three-dimensional linearization of optical trap position detection for precise high speed diffusion measurements

Y.-H. Hsu and A. Pralle

Studies of the details of Brownian motion, hydrodynamic of colloids, or protein diffusion measurements all require high temporal and spatial resolution of the position detector and a means to trap the colloid. Optical trap based thermal noise imaging employing a quadrant photodiode as detector provides such a method. However, optical trapping requires an objective with high numerical aperture resulting in highly nonlinear position signal and significant cross-dependence of the three spatial directions. Local diffusion measurements are especially susceptible to distance errors. Here, we present a position calibration method, which corrects nonlinearities sufficiently to allow precise local diffusion measurement throughout the entire trapping volume. This correction permits us to obtain high-resolution two- and three-dimensional diffusion maps.

DOI

Friday, July 25, 2014

Selective particle trapping and optical binding in the evanescent field of an optical nanofiber

M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic

The evanescent field of an optical nanofiber presents a versatile interface for the manipulation of micron-scale particles in dispersion. Here, we present a detailed study of the optical binding interactions of a pair of 3.13 μm SiO2 spheres in the nanofiber evanescent field. Preferred equilibrium positions for the spheres as a function of nanofiber diameter and sphere size are discussed. We demonstrated optical propulsion and self-arrangement of chains of one to seven 3.13 μm SiO2 particles; this effect is associated with optical binding via simulated trends of multiple scattering effects. Incorporating an optical nanofiber into an optical tweezers setup facilitated the individual and collective introduction of selected particles to the nanofiber evanescent field for experiments. Computational simulations provide insight into the dynamics behind the observed behavior.

DOI

Measuring kinetic energy changes in the mesoscale with low acquisition rates

É. Roldán, I. A. Martínez, L. Dinis and R. A. Rica

We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.

DOI

Absolute calibration of forces in optical tweezers

R. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig

Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

DOI