.

Monday, July 25, 2016

Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics

Shangjr Gwo, Hung-Ying Chen, Meng-Hsien Lin, Liuyang Sun and Xiaoqin Li

Localized surface plasmon resonances (LSPRs) associated with metallic nanostructures offer unique possibilities for light concentration beyond the diffraction limit, which can lead to strong field confinement and enhancement in deep subwavelength regions. In recent years, many transformative plasmonic applications have emerged, taking advantage of the spectral and spatial tunability of LSPRs enabled by near-field coupling between constituent metallic nanostructures in a variety of plasmonic metastructures (dimers, metamolecules, metasurfaces, metamaterials, etc.). For example, the “hot spot” formed at the interstitial site (gap) between two coupled metallic nanostructures in a plasmonic dimer can be spectrally tuned via the gap size. Capitalizing on these capabilities, there have been significant advances in plasmon enhanced or enabled applications in light-based science and technology, including ultrahigh-sensitivity spectroscopies, light energy harvesting, photocatalysis, biomedical imaging and theranostics, optical sensing, nonlinear optics, ultrahigh-density data storage, as well as plasmonic metamaterials and metasurfaces exhibiting unusual linear and nonlinear optical properties. In this review, we present two complementary approaches for fabricating plasmonic metastructures. We discuss how meta-atoms can be assembled into unique plasmonic metastructures using a variety of nanomanipulation methods based on single- or multiple-probes in an atomic force microscope (AFM) or a scanning electron microscope (SEM), optical tweezers, and focused electron-beam nanomanipulation. We also provide a few examples of nanoparticle metamolecules with designed properties realized in such well-controlled plasmonic metastructures. For the spatial controllability on the mesoscopic and macroscopic scales, we show that controlled self-assembly is the method of choice to realize scalable two-dimensional, and three-dimensional plasmonic metastructures. In the section of applications, we discuss some key examples of plasmonic applications based on individual hot spots or ensembles of hot spots with high uniformity and improved controllability.

DOI

Single-File Escape of Colloidal Particles from Microfluidic Channels

Emanuele Locatelli, Matteo Pierno, Fulvio Baldovin, Enzo Orlandini, Yizhou Tan, and Stefano Pagliara

Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10−15  N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

DOI

Highly-integrated, laser manipulable aqueous metal carbonyl vesicles (MCsomes) with aggregation-induced emission (AIE) and aggregation-enhanced IR absorption (AEIRA)

Nimer Murshid, Ken-ichi Yuyama, San-Lien Wu, Kuan-Yi Wu, Hiroshi Masuhara, Chien-Lung Wang and Xiaosong Wang

A highly-integrated, laser manipulable multi-functional metal carbonyl nanovesicle (MCsome) with aggregation-induced emission (AIE) and aggregation-enhanced IR absorption (AEIRA) is created via the self-assembly of a bithiophene tethered-Fp acyl derivative (Fp: CpFe(CO)2) (1). Although 1 is hydrophobic and non-surface-active, the molecule can self-assemble in water into vesicles without detectable critical aggregation concentration (CAC). The water–carbonyl interaction (WCI) is responsible for the colloidal stability. The bilayer membrane structure with the bithiophene moieties associated within the inner wall and the iron-carbonyl units exposed to water is confirmed by transmission electron microscopy (TEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) experiments. The synchrotron small-angle X-ray scattering (SAXS) experiment suggests that the bithiophene groups are interdigitated within the membrane. The spatial segregation of the AIE-active bithiophene domain from the iron-carbonyl units by the butanoyl spacers prevents the quenching effect of the iron and renders the MCsome photoluminescent. The polarizable iron-carbonyl groups on the surface of the MCsome create an enhanced optical field upon infrared (IR) irradiation, resulting in an enhancement (ca. 100-fold) in IR absorption for the carbonyl groups as compared to the same concentration of molecule 1 in THF. When the MCsome interacts with a focused continuous-wave near-IR (NIR) laser beam, a strong gradient (trapping) force is generated allowing the laser trapping of the MCsome without using additives. A sharp contrast in the refractive index (RI) of 1 (RI = 1.71) with water (RI = 1.33) accounts for this laser manipulability that is difficult to be achieved for nanosized liposomes (RI = 1.46). As illustrated, the MCsome of 1 represents a novel group of vesicular colloids, which is amenable to functional materials complementary to extensively studied liposomes and polymersomes.

DOI

Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

David Grass, Julian Fesel, Sebastian G. Hofer, Nikolai Kiesel and Markus Aspelmeyer

We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.

DOI

Tuesday, July 19, 2016

Noise-to-signal transition of a Brownian particle in the cubic potential: II. optical trapping geometry

Pavel Zemánek, Martin Šiler, Oto Brzobohatý, Petr Jákl and Radim Filip

The noise-to-signal transitions belong to an exciting group of processes in physics. In Filip and Zemánek (2016, J. Opt. 18 065401) we theoretically analyse the stochastic noise-to-signal transition of overdamped Brownian motion of a particle in the cubic potential. In this part, we propose a feasible experimental setup for a proof-of-principle experiment that uses methods of optical trapping in shaped laser beams which provide cubic and quadratic potentials. Theoretical estimates and results from the numerical simulations indicate that the noise-to-signal transition can be observed under realistic experimental conditions.

DOI

Tracking Control for Optical Manipulation With Adaptation of Trapping Stiffness

Xiang Li, Chien Chern Cheah

In the optical manipulation problem of biological cells, the optical trap works only in a small neighborhood around the centroid of a focused light beam. Due to the Gaussian distribution of light intensity, the trapping stiffness is dependent on the distance between the cell and the centroid of the laser beam. In addition, the parameters of the stiffness vary with laser power and sizes of cells, and hence, it is difficult to obtain the exact model of the trapping stiffness. This paper considers the tracking control problem for the optical manipulation with unknown trapping stiffness. In the presence of unknown trapping stiffness, the tracking control tasks fail and the stability of the control system may not be guaranteed. We present parameter update laws to update the unknown trapping stiffness and dynamic parameters concurrently and separately. With online adaptation of the unknown trapping stiffness, a tracking control method is developed for optical tweezers such that the laser beam is able to automatically trap and manipulate the cell to follow a desired time-varying trajectory. The stability of the optical tweezers system is analyzed using the Lyapunov method, with consideration of the dynamic interaction between the cell and the manipulator of the laser source. The experimental results are presented to illustrate the performance of the proposed adaptive tracking controller with unknown trapping stiffness.

DOI

Physical basis of some membrane shaping mechanisms

Mijo Simunovic, Coline Prévost, Andrew Callan-Jones, Patricia Bassereau

In vesicular transport pathways, membrane proteins and lipids are internalized, externalized or transported within cells, not by bulk diffusion of single molecules, but embedded in the membrane of small vesicles or thin tubules. The formation of these ‘transport carriers’ follows sequential events: membrane bending, fission from the donor compartment, transport and eventually fusion with the acceptor membrane. A similar sequence is involved during the internalization of drug or gene carriers inside cells. These membrane-shaping events are generally mediated by proteins binding to membranes. The mechanisms behind these biological processes are actively studied both in the context of cell biology and biophysics. Bin/amphiphysin/Rvs (BAR) domain proteins are ideally suited for illustrating how simple soft matter principles can account for membrane deformation by proteins. We review here some experimental methods and corresponding theoretical models to measure how these proteins affect the mechanics and the shape of membranes. In more detail, we show how an experimental method employing optical tweezers to pull a tube from a giant vesicle may give important quantitative insights into the mechanism by which proteins sense and generate membrane curvature and the mechanism of membrane scission.

DOI

Enhanced and unusual angle-dependent optical forces exerted on Mie particles by Airy surface plasmon wave

Yang Yang, Yanli Xue, Jiafang Li and Zhi-Yuan Li

In this paper, using an angular spectrum method, we develop an analytical theory for Airy surface plasmon wave excited in a classical Kretschmann setup. It is found that the center of an Airy surface plasmon polariton (SPP) wave has a giant positive lateral shift, and the sidelobes move forward along the surface. The intensity of the Airy SPP wave is greatly enhanced, the corresponding optical forces can be enhanced by more than one order of magnitude. Importantly, we show that the sidelobes of the Airy SPP beam can lead to the splitting of optical force spectra with the variation of incident angle, which is accompanied by strong oscillations emerging at the optimal metal layer thickness. Moreover, the effects of multiple scatterings of the Airy SPP wave between the particle and the metal layer are also discussed. The theoretical analysis could open up new perspectives for the applications of Airy beam in optical manipulation and surface-enhanced Raman scattering.

DOI

Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores

Prakash Shrestha, Tomoko Emura, Deepak Koirala, Yunxi Cui, Kumi Hidaka, William J Maximuck, Masayuki Endo, Hiroshi Sugiyama, and Hanbin Mao

DNA nanoassemblies have demonstrated wide applications in various fields including nanomaterials, drug delivery and biosensing. In DNA origami, single-stranded DNA template is shaped into desired nanostructure by DNA staples that form Holliday junctions with the template. Limited by current methodologies, however, mechanical properties of DNA origami structures have not been adequately characterized, which hinders further applications of these materials. Using laser tweezers, here, we have described two mechanical properties of DNA nanoassemblies represented by DNA nanotubes, DNA nanopyramids and DNA nanotiles. First, mechanical stability of DNA origami structures is determined by the effective density of Holliday junctions along a particular stress direction. Second, mechanical isomerization observed between two conformations of DNA nanotubes at 10–35 pN has been ascribed to the collective actions of individual Holliday junctions, which are only possible in DNA origami with rotational symmetric arrangements of Holliday junctions, such as those in DNA nanotubes. Our results indicate that Holliday junctions control mechanical behaviors of DNA nanoassemblies. Therefore, they can be considered as ‘mechanophores’ that sustain mechanical properties of origami nanoassemblies. The mechanical properties observed here provide insights for designing better DNA nanostructures. In addition, the unprecedented mechanical isomerization process brings new strategies for the development of nano-sensors and actuators.

DOI

Friday, July 15, 2016

Optical interaction between small plasmonic nanowires: a perspective from induced forces and torques

Ricardo M Abraham Ekeroth

This paper addresses a new numerical study of the near electromagnetic coupling between two small, metallic nanowires under plane-wave illumination. The forces and torques induced give a different point of view of the interaction. The analysis of these near-field, mechanical observables is based entirely on the plasmon hybridization model, with the help of an adequate correlation with far fields. Although several studies of the opto-mechanical inductions have been done, unexpected features of the movement are obtained. 'Coordinated' spin for the wires are found, in addition to binding or repulsion forces between the wires and scattering forces. For heterodimers, also orbital torques are obtained. The binding and rotation of the nanowires as well as orbital torques are strongly dependent on the plasmonic excitations of the system. They identify uniquely the surface plasmons. In particular, dark modes can be optically detected without using evanescent fields. The optical forces and torques are calculated exactly by Maxwell stress tensor. 'Realistic' infinite nanowires of silver and gold are simulated by a size correction in bulk dielectric function. Thus, the importance of this correction on the mechanical results is also studied. The results can contribute to the design of devices for real observation/detection of surface plasmons. The spectra of forces, and specially of torques, show more resolved resonances because overlapping effects are not as present as in far-field calculations. The spinning of wires found and the analysis made could open new directions of studies and applications of dimers.

DOI