Monday, December 10, 2018

Optimizing optical tweezing with directional scattering in composite microspheres

R. Ali, F. A. Pinheiro, F. S. S. Rosa, R. S. Dutra, and P. A. Maia Neto

We demonstrate that achieving zero backward scattering (ZBS), i.e., the first Kerker condition, allows for optical tweezing of high-index microspheres, which cannot be trapped using standard techniques. For this purpose, we propose an alternative material platform based on composite metamaterials. By tuning the volume filling fraction of inclusions and the microsphere radius, stable trapping can be achieved provided that ZBS is combined with the condition for destructive interference between the fields reflected at the external and internal interfaces of the microsphere when located at the focal point. By using the Mie-Debye-spherical aberration theory, we also show that the ZBS condition is even more useful in realistic, standard optical tweezer setups, in which spherical aberration is unavoidable due to refraction at the interface between the glass slide and the water-filled sample. Altogether, our findings not only pave the way for possible new trapping designs and applications but also unveil the role of backscattering in the physics of optical tweezers.


Theory of optical forces on small particles by multiple plane waves

Ehsan Mobini, Aso Rahimzadegan, Carsten Rockstuhl, and Rasoul Alaee

We theoretically investigate the optical force exerted on an isotropic particle illuminated by a superposition of plane waves. We derive explicit analytical expressions for the exerted force up to quadrupolar polarizabilities. Based on these analytical expressions, we demonstrate that an illumination consisting of two tilted plane waves can provide a full control on the optical force. In particular, optical pulling, pushing, and lateral forces can be obtained by the proper tuning of illumination parameters. Our findings might unlock multiple applications based on a deterministic control of the spatial motion of small particles.

Optical Trapping and Manipulation of Superparamagnetic Beads Using Annular-Shaped Beams

Leandro Oliveira, Warlley H. Campos and Marcio S. Rocha

We propose an optical tweezers setup based on an annular-shaped laser beam that is efficient to trap 2.8 μ m-diameter superparamagnetic particles. The optical trapping of such particles was fully characterized, and a direct absolute comparison with a geometrical optics model was performed. With this comparison, we were able to show that light absorption by the superparamagnetic particles is negligible for our annular beam tweezers, differing from the case of conventional Gaussian beam tweezers, in which laser absorption by the beads makes stable trapping difficult. In addition, the trap stiffness of the annular beam tweezers increases with the laser power and with the bead distance from the coverslip surface. While this first result is expected and similar to that achieved for conventional Gaussian tweezers, which use ordinary dielectric beads, the second result is quite surprising and different from the ordinary case, suggesting that spherical aberration is much less important in our annular beam geometry. The results obtained here provide new insights into the development of hybrid optomagnetic tweezers, which can apply simultaneously optical and magnetic forces on the same particles.


Anisotropic mechanics and dynamics of a living mammalian cytoplasm

Satish Kumar Gupta, Yiwei Li and Ming Guo

During physiological processes, cells can undergo morphological changes that can result in a significant redistribution of the cytoskeleton causing anisotropic behavior. Evidence of anisotropy in cells under mechanical stimuli exists; however, the role of cytoskeletal restructuring resulting from changes in cell shape in mechanical anisotropy and its effects remain unclear. In the present study, we examine the role of cell morphology in inducing anisotropy in both intracellular mechanics and dynamics. We change the aspect ratio of cells by confining the cell width and measuring the mechanical properties of the cytoplasm using optical tweezers in both the longitudinal and transverse directions to quantify the degree of mechanical anisotropy. These active microrheology measurements are then combined with intracellular movement to calculate the intracellular force spectrum using force spectrum microscopy (FSM), from which the degree of anisotropy in dynamics and force can be quantified. We find that unrestricted cells with aspect ratio (AR) ∼1 are isotropic; however, when cells break symmetry, they exhibit significant anisotropy in cytoplasmic mechanics and dynamics.


Host membrane glycosphingolipids and lipid microdomains facilitate Histoplasma capsulatum internalisation by macrophages

Allan J. Guimarães, Mariana Duarte de Cerqueira, Daniel Zamith‐Miranda, Pablo H. Lopez, Marcio L. Rodrigues, Bruno Pontes, Nathan B. Viana, Carlos M. DeLeon‐Rodriguez, Diego Conrado Pereira Rossi, Arturo Casadevall, Andre M.O. Gomes, Luis R. Martinez, Ronald L. Schnaar, Joshua D. Nosanchuk, Leonardo Nimrichter

Recognition and internalisation of intracellular pathogens by host cells is a multifactorial process, involving both stable and transient interactions. The plasticity of the host cell plasma membrane is fundamental in this infectious process. Here, the participation of macrophage lipid microdomains during adhesion and internalisation of the fungal pathogen Histoplasma capsulatum (Hc) was investigated. An increase in membrane lateral organisation, which is a characteristic of lipid microdomains, was observed during the first steps of Hc–macrophage interaction. Cholesterol enrichment in macrophage membranes around Hc contact regions and reduced levels of Hc–macrophage association after cholesterol removal also suggested the participation of lipid microdomains during Hc–macrophage interaction. Using optical tweezers to study cell‐to‐cell interactions, we showed that cholesterol depletion increased the time required for Hc adhesion. Additionally, fungal internalisation was significantly reduced under these conditions. Moreover, macrophages treated with the ceramide‐glucosyltransferase inhibitor (P4r) and macrophages with altered ganglioside synthesis (from B4galnt1−/− mice) showed a deficient ability to interact with Hc. Coincubation of oligo‐GM1 and treatment with Cholera toxin Subunit B, which recognises the ganglioside GM1, also reduced Hc association. Although purified GM1 did not alter Hc binding, treatment with P4 significantly increased the time required for Hc binding to macrophages. The content of CD18 was displaced from lipid microdomains in B4galnt1−/− macrophages. In addition, macrophages with reduced CD18 expression (CD18low) were associated with Hc at levels similar to wild‐type cells. Finally, CD11b and CD18 colocalised with GM1 during Hc–macrophage interaction. Our results indicate that lipid rafts and particularly complex gangliosides that reside in lipid rafts stabilise Hc–macrophage adhesion and mediate efficient internalisation during histoplasmosis.


Mechanobiology: protein refolding under force

Ionel Popa, Ronen Berkovich

The application of direct force to a protein enables to probe wide regions of its energy surface through conformational transitions as unfolding, extending, recoiling, collapsing, and refolding. While unfolding under force typically displayed a two-state behavior, refolding under force, from highly extended unfolded states, displayed a more complex behavior. The first recording of protein refolding at a force quench step displayed an initial rapid elastic recoil, followed by a plateau phase at some extension, concluding with a collapse to a final state, at which refolding occurred. These findings stirred a lively discussion, which led to further experimental and theoretical investigation of this behavior. It was demonstrated that the polymeric chain of the unfolded protein is required to fully collapse to a globular conformation for the maturation of native structure. This behavior was modeled using one-dimensional free energy landscape over the end-to-end length reaction coordinate, the collective measured variable. However, at low forces, conformational space is not well captured by such models, and using two-dimensional energy surfaces provides further insight into the dynamics of this process. This work reviews the main concepts of protein refolding under constant force, which is essential for understanding how mechanotransducing proteins operate in vivo.


Characterizing abrupt transitions in stochastic dynamics

Klaus Lehnertz, Lina Zabawa and M Reza Rahimi Tabar

Data sampled at discrete times appears as a succession of discontinuous jumps, even if the underlying trajectory is continuous. We analytically derive a criterion that allows one to check whether for a given, even noisy time series the underlying process has a continuous (diffusion) trajectory or has jump discontinuities. This enables one to detect and characterize abrupt changes (jump events) in given time series. The proposed criterion is validated numerically using synthetic continuous and discontinuous time series. We demonstrate applicability of our criterion to distinguish diffusive and jumpy behavior by a data-driven inference of higher-order conditional moments from empirical observations.


Friday, December 7, 2018

Versatile applications of three-dimensional objects fabricated by two-photon-initiated polymerization

Cheol Woo Ha, Prem Prabhakaran, and Kwang-Sup Lee

In this topical review of two-photon stereolithography (TPS), we discuss novel materials and demonstrate applications of this technology. Two-photon-initiated chemical processes are used to fabricate arbitrary three-dimensional structures in TPS. In the first part of this article, the development of novel photoactive materials to fabricate pure inorganic or organic–inorganic hybrid microstructures is discussed. The second part discusses the fabrication of functional microstructures for highly specific applications to demonstrate the importance of TPS in different fields of science.


A review of complex vector light fields and their applications

Carmelo Rosales-Guzmán, Bienvenu Ndagano and Andrew Forbes

Vector beams, and in particular vector vortex beams, have found many applications in recent times, both as classical fields and as quantum states. While much attention has focused on the creation and detection of scalar optical fields, it is only recently that vector beams have found their place in the modern laboratory. In this review, we outline the fundamental concepts of vector beams, summarise the various approaches to control them in the laboratory, and give a concise overview of the many applications they have spurned.


Detecting stimulated Raman responses of molecules in plasmonic gap using photon induced forces

Venkata Ananth Tamma, Lindsey M. Beecher, Jennifer S. Shumaker-Parry, and Hemanta Kumar Wickramasinghe

We demonstrate the stimulated Raman nanoscopy of a small number of molecules in a plasmonic gap, excited without resonant electronic enhancement, measured using near-field photon-induced forces, eliminating the need for far-field optical detection. We imaged 30 nm diameter gold nanoparticles functionalized with a self-assembled monolayer (SAM) of 4-nitrobenzenethiol (4-NBT) molecules. The maximum number of molecules detected by the gold-coated nano-probe at the position of maximum field enhancement could be fewer than about 42 molecules. The molecules were imaged by vibrating an Atomic Force Microscope (AFM) cantilever on its second flexural eigenmode enabling the tip to be controlled much closer to the sample, thereby improving the detected signal-to-noise ratio when compared to vibrating the cantilever on its first flexural eigenmode. We also demonstrate the implementation of stimulated Raman nanoscopy measured using photon-induced force with non-collinear pump and stimulating beams which could have applications in polarization dependent Raman nanoscopy and spectroscopy and pump-probe nano-spectroscopy particularly involving infrared beam/s. We also discuss using photon induced forces as a technique to sort and select best performing metal coated tips for further use in tip-enhanced experiments.