Xunmin Zhu, Nan Li, Jianyu Yang, Xingfan Chen and Huizhu Hu
As a kind of ultra-sensitive acceleration sensing platform, optical tweezers show a minimum measurable value inversely proportional to the square of the diameter of the levitated spherical particle. However, with increasing diameter, the coupling of the displacement measurement between the axes becomes noticeable. This paper analyzes the source of coupling in a forward-scattering far-field detection regime and proposes a novel method of suppression. We theoretically and experimentally demonstrated that when three variable irises are added into the detection optics without changing other parts of optical structures, the decoupling of triaxial displacement signals mixed with each other show significant improvement. A coupling detection ratio reduction of 49.1 dB and 22.9 dB was realized in radial and axial directions, respectively, which is principally in accord with the simulations. This low-cost and robust approach makes it possible to accurately measure three-dimensional mechanical quantities simultaneously and may be helpful to actively cool the particle motion in optical tweezers even to the quantum ground state in the future.
DOI
No comments:
Post a Comment