.

Thursday, November 23, 2017

Contrast and imaging performance in photo induced force microscopy

Mohammad Almajhadi and H. Kumar Wickramasinghe

We numerically analyze PiFM’s lateral and vertical (subsurface) imaging performance in the visible and IR regimes. The lateral spatial resolution and subsurface imaging capabilities are limited by the field spatial confinement near the tip apex, which is directly proportional to the excitation wavelength. In addition, we show that near-field optical force exerted on the tip due to sample molecular resonance is indeed in the detectable range. Moreover, driving sample on (off) resonance reveals high (low) contrast. The strength of the optical forces is assessed for metal (gold), polymers (Polystyrene and Polymethylmethacrylate), and solid (SiC). By increasing tip-coating thickness from 5 nm to 35 nm, the gap-field enhancement decreases to about 40%. In IR, force spectrum over an absorption band is predominantly following the real part of the polarizability, as predicted by dipole-dipole approximation.

DOI

No comments: