.

Tuesday, October 4, 2016

Simultaneous Characterization of Nanoparticle Size and Particle-Surface Interactions with Three-Dimensional Nanophotonic Force Microscopy

Dakota O’Dell, Perry Schein, and David Erickson

The behavior of a nanoparticle in solution depends strongly on the particle’s physical and chemical characteristics, most notably the particle size and the surface properties. Accurately characterizing these properties is critical for quality control in a wide variety of industries. To understand a complex and polydisperse nanoparticle suspension, however, ensemble averaging is not sufficient, and there is a great need for direct measurements of size and surface properties at the individual nanoparticle level. In this work, we present an analysis technique for simultaneous characterization of particle-surface interactions and size using near-field light scattering and verify it using Brownian-dynamics simulations. Using a nanophotonic waveguide, single particles can be stably held near the waveguide’s surface by strongly localized optical forces. By tracking the dynamic 3D motion of the particle under the influence of these forces using an optical microscope, it is possible to extract the particle-surface interaction forces, as well as to estimate the size and refractive index of the nanoparticle. Because of the strong light-scattering signal, this method is viable for high-throughput characterization of particles as small as 100 nm in only a few seconds each.

DOI

No comments: