Martin Verner Kristensen, Peter Ahrendt, Thue Bjerring Lindballe, Otto Højager Attermann Nielsen, Anton P. Kylling,Henrik Karstoft, Alberto Imparato, Leticia Hosta-Rigau, Brigitte Stadler, Henrik Stapelfeldt, and Søren Rud Keiding
Motion analysis of optically trapped objects is demonstrated using a simple 2D Fourier transform technique. The displacements of trapped objects are determined directly from the phase shift between the Fourier transform of subsequent images. Using end- and side-view imaging, the stiffness of the trap is determined in three dimensions. The Fourier transform method is simple to implement and applicable in cases where the trapped object changes shape or where the lighting conditions change. This is illustrated by tracking a fluorescent particle and a myoblast cell, with subsequent determination of diffusion coefficients and the trapping forces.
DOI
Motion analysis of optically trapped objects is demonstrated using a simple 2D Fourier transform technique. The displacements of trapped objects are determined directly from the phase shift between the Fourier transform of subsequent images. Using end- and side-view imaging, the stiffness of the trap is determined in three dimensions. The Fourier transform method is simple to implement and applicable in cases where the trapped object changes shape or where the lighting conditions change. This is illustrated by tracking a fluorescent particle and a myoblast cell, with subsequent determination of diffusion coefficients and the trapping forces.
DOI
No comments:
Post a Comment