.

Tuesday, February 4, 2020

The Biogenesis of SRP RNA Is Modulated by an RNA Folding Intermediate Attained during Transcription

Shingo Fukuda, Shannon Yan, Yusuke Komi, Mingxuan Sun, Ronen Gabizon, Carlos Bustamante

The signal recognition particle (SRP), responsible for co-translational protein targeting and delivery to cellular membranes, depends on the native long-hairpin fold of its RNA to confer functionality. Since RNA initiates folding during its synthesis, we used high-resolution optical tweezers to follow in real time the co-transcriptional folding of SRP RNA. Surprisingly, SRP RNA folding is robust to transcription rate changes and the presence or absence of its 5′-precursor sequence. The folding pathway also reveals the obligatory attainment of a non-native hairpin intermediate (H1) that eventually rearranges into the native fold. Furthermore, H1 provides a structural platform alternative to the native fold for RNase P to bind and mature SRP RNA co-transcriptionally. Delays in attaining the final native fold are detrimental to the cell, altogether showing that a co-transcriptional folding pathway underpins the proper biogenesis of function-essential SRP RNA.

DOI

No comments: