.

Tuesday, February 18, 2020

Modified plasmonic response of dimer nanoantennas with nonlocal effects: From near-field enhancement to optical force

Hancong Wang, Kaixi Chen, Jia Pan, Shihao Huang, Jinyang Lin, Wenming Xie, Xuhong Huang

The metallic nanoparticle dimer is a fundamental model system for enhancing and tuning localized surface plasmon resonances. In the past, it had been found that the far- and near-field optical properties of dimer antennas can be regulated by many parameters (e.g., gap, size, orientation, materials, and surrounding medium). In recent years, the quantum mechanical effects such as nonlocal screening and electron tunneling have been achieved when the gap distance in a dimer approaches 1 nm and subnanometer. In this communication, both the near-field enhancement and optical force in dimer are fully investigated and compared between classical and nonlocal models. Compared with classical theory, we found that both the resonant wavelength and peak intensity have smaller changes in nonlocal model when geometrical or material parameters changes. Besides, the extent of parameter-induced spectral changes is slightly different between near-field enhancement and optical force. These results make possible the quantitative analysis of nonlocal effects in surface-enhanced spectroscopy, nanoantennas, refractive-index sensing, surface-enhanced optical force, and quantum plasmonics.

DOI

No comments: