Matthew T. J. Halma, Dustin B. Ritchie, Tonia R. Cappellano, Krishna Neupane, and Michael T. Woodside
Specific structures in mRNA can stimulate programmed ribosomal frameshifting (PRF). PRF efficiency can vary enormously between different stimulatory structures, but the features that lead to efficient PRF stimulation remain uncertain. To address this question, we studied the structural dynamics of the frameshift signal from West Nile virus (WNV), which stimulates −1 PRF at very high levels and has been proposed to form several different structures, including mutually incompatible pseudoknots and a double hairpin. Using optical tweezers to apply tension to single mRNA molecules, mimicking the tension applied by the ribosome during PRF, we found that the WNV frameshift signal formed an unusually large number of different metastable structures, including all of those previously proposed. From force-extension curve measurements, we mapped 2 mutually exclusive pathways for the folding, each encompassing multiple intermediates. We identified the intermediates in each pathway from length changes and the effects of antisense oligomers blocking formation of specific contacts. Intriguingly, the number of transitions between the different conformers of the WNV frameshift signal was maximal in the range of forces applied by the ribosome during −1 PRF. Furthermore, the occupancy of the pseudoknotted conformations was far too low for static pseudoknots to account for the high levels of −1 PRF. These results support the hypothesis that conformational heterogeneity plays a key role in frameshifting and suggest that transitions between different conformers under tension are linked to efficient PRF stimulation.
DOI
No comments:
Post a Comment