.

Thursday, October 18, 2018

Living Nanospear for Near-Field Optical Probing

Yuchao Li, Hongbao Xin, Yao Zhang, Hongxiang Lei, Tianhang Zhang, Huapeng Ye, Juan Jose Saenz, Cheng-Wei Qiu, and Baojun Li

Optical nanoprobes, designed to emit or collect light in the close proximity of a sample, have been extensively used to sense and image at nanometer resolution. However, the available nanoprobes, constructed from artificial materials, are incompatible and invasive when interfacing with biological systems. In this work, we report a fully biocompatible nanoprobe for subwavelength probing of localized fluorescence from leukemia single-cells in human blood. The bioprobe is built on a tapered fiber tip apex by optical trapping of a yeast cell (1.4 μm radius) and a chain of Lactobacillus acidophilus cells (2 μm length and 200 nm radius), which act as a high-aspect-ratio nanospear. Light propagating along the bionanospear can be focused into a spot with a full width at half-maximum (fwhm) of 190 nm on the surface of single cells. Fluorescence signals are detected in real time at subwavelength spatial resolution. These noninvasive and biocompatible optical probes will find applications in imaging and manipulation of biospecimens.

DOI

No comments: