José A. Rodrigo, Mercedes Angulo, and Tatiana Alieva
The development of optical manipulation techniques focused on the confinement and transport of micro/nano-particles has attracted increased interest in the last decades. In particular the combination of all-optical confinement and propelling forces, respectively arising from high intensity and phase gradients of a strongly focused laser beam, is promising for optical transport. The recently developed freestyle laser trap exploits this manipulation mechanism to achieve optical transport along arbitrary 3D curves. In practice, reconfigurable 3D optical transport of numerous particles is a challenging problem because it requires the ability to easily adapt the trajectory in real time. In this work, we introduce and experimentally demonstrate a strategy for on-task adaptive design of freestyle laser traps based on a dynamic morphing technique. This provides programmable smooth transformation of the 3D shape of the curved laser trap with independent control of the propelling forces along it, that can be configured according to the considered application. Dynamic morphing, proven here on the example of colloidal dielectric micro-particles, significantly simplifies the important problem of real-time reconfigurable 3D optical transport and opens up routes for other sophisticated optical manipulation tasks.
DOI
No comments:
Post a Comment