.

Tuesday, March 6, 2018

Full molecular trajectories of RNA polymerase at single base-pair resolution

Maurizio Righini, Antony Lee, Cristhian Cañari-Chumpitaz, Troy Lionberger, Ronen Gabizon, Yves Coello, Ignacio Tinoco and Carlos Bustamante

Optical tweezers enable scientists to follow the dynamics of molecular motors at high resolution. The ability to discern a motor’s discrete steps reveals important insights on its operation. Some motors operate at the scale of angstroms, rendering the observation of their steps extremely challenging. In some cases, such small steps have been observed sporadically; however, the full molecular trajectories of steps and intervals between steps remain elusive due to instrumental noise. Here, we eliminate the main source of noise of most high-resolution dual-trap optical tweezers and developed both a single-molecule assay and a self-learning algorithm to uncover the full trajectories of such a motor: RNA polymerase. Using this method, a whole new set of experiments becomes possible.

DOI

No comments: