Prakash Shrestha, Yunxi Cui, Jia Wei, Sagun Jonchhe, and Hanbin Mao
Due to the fast diffusion, small molecules such as hydronium ions (H3O+) are expected to be homogeneously distributed, even close to the site-of-origin. Given the importance of H3O+ in numerous processes, it is surprising that H3O+ concentration ([H3O+]) has yet to be profiled near its generation site with nanometer resolution. Here, we innovated a single-molecule method to probe [H3O+] in nanometer proximity of individual alkaline phosphatases. We designed a mechanophore with cytosine (C)–C mismatch pairs in a DNA hairpin. Binding of H3O+ to these C–C pairs changes mechanical properties, such as stability and transition distance, of the mechanophore. These changes are recorded in optical tweezers and analyzed in a multivariate fashion to reduce the stochastic noise of individual mechanophores. With this method, we found [H3O+] increases in the nanometer vicinity of an active alkaline phosphatase, which supports that the proximity effect is the cause for increased rates in cascade enzymatic reactions.
DOI
No comments:
Post a Comment