Friday, May 19, 2017

Optical pulling force and torques on Rayleigh semiconductor prolate and oblate spheroids in Bessel tractor beams

F.G. Mitri

Optical tractor Bessel beams are gaining increased interest where a negative attractive force acting in opposite direction of wave propagation is harnessed for particle manipulation in opto-fluidics, the manufacturing of periodic composite metamaterials and other related applications. Previous works considered the spherical geometry, however, it is of some importance to develop improved models to investigate objects of more complex shapes and study the tractor beam effect on them. The aim of this work is therefore directed toward this goal, where the dipole approximation method is used to compute the optical force, spin and orbital torques on a subwavelength semiconductor spheroid illuminated by a zeroth-order Bessel vector beam. Numerical computations for the Cartesian components of the optical radiation force on prolate and oblate spheroids with arbitrary orientation are performed, with emphasis on the emergence of a negative pulling force and its dependence on the half-cone angle of the beam, the aspect ratio of the spheroid, and its orientation in space. Moreover, the Cartesian components of the spin radiation torque are computed where a negative spin torque can arise, which causes a rotational twisting effect of the spheroid around its center of mass in either the counterclockwise or the clockwise (negative) direction of spinning. In addition, the axial component of the orbital radiation torque is computed which also shows sign reversal. The results of this analysis provide a priori information for the design and development of novel optical tweezers devices and tractor beams, with potential applications in the manipulation and handling of elongated particles.

Post a Comment