Remy Avila, Joaquín Ascencio-Rodríguez, Daniel Tapia-Merino, Oscar G. Rodríguez-Herrera, and Arturo González-Suárez
Optical tweezers consist of the spatial confinement of microscopic dielectric particles by the action of forces produced by the change in momentum of the photons of a highly focused laser beam that are deviated by the particle. In experiments that use a single laser beam, it is common to capture not only one but a few particles in the optical trap. However, to our knowledge, the formation of a long chain of beads optically confined with a single laser beam has never been reported. In this work, up to 73 silica spheres immersed in water are seen concatenated along the propagation direction of a 976-nm wavelength Gaussian laser of 300 mW of power. This long chain of beads is obtained when the laser is focused through an oil-immersion DIN microscope objective with 100× magnification and a numerical aperture of 1.25. When performing the same experiment using an infinity-corrected UplanFLN 100× objective with a numerical aperture of 1.3, the maximum number of concatenated beads is only 14. Our results suggest that the mechanisms responsible for the observed phenomena involve successive refocusing of the laser beam by each trapped sphere, optically induced dipole coupling (commonly referred to as optical binding), and aberrations generated by the DIN microscope objective.
DOI
No comments:
Post a Comment