Thursday, September 29, 2016

Temporal oscillations of light transmission through dielectric microparticles subjected to optically induced motion

Almas F. Sadreev and E. Ya. Sherman

We consider light-induced binding and motion of dielectric microparticles in an optical waveguide that gives rise to a backaction effect such as light transmission oscillating with time. Modeling the particles by dielectric slabs allows us to solve the problem analytically and obtain a rich variety of dynamical regimes both for Newtonian and damped motion. This variety is clearly reflected in temporal oscillations of the light transmission. The characteristic frequencies of the oscillations are within the ultrasound range of the order of 105 kHz for micron-size particles and injected power of the order of 100 mW. In addition, we consider dynamics of a dielectric particle, driven by light propagating inside a Fabry-Perot resonator. These phenomena pave a way for optical driving and monitoring of the motion of particles in waveguides and resonators.

Post a Comment