L. A. Shaw, S. Chizari, R. M. Panas, M. Shusteff, C. M. Spadaccini, and J. B. Hopkins
The aim of this research is to demonstrate a holographically driven photopolymerization process for joining colloidal particles to create planar microstructures fixed to a substrate, which can be monitored with real-time measurement. Holographic optical tweezers (HOT) have been used to arrange arrays of microparticles prior to this work; here we introduce a new photopolymerization process for rapidly joining simultaneously handled microspheres in a plane. Additionally, we demonstrate a new process control technique for efficiently identifying when particles have been successfully joined by measuring a sufficient reduction in the particles’ Brownian motion. This technique and our demonstrated joining approach enable HOT technology to take critical steps toward automated additive fabrication of microstructures.
DOI
No comments:
Post a Comment