Wednesday, July 6, 2016

Active dynamics of colloidal particles in time-varying laser speckle patterns

Silvio Bianchi, Riccardo Pruner, Gaszton Vizsnyiczai, Claudio Maggi & Roberto Di Leonardo

Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles.

Post a Comment