.

Friday, March 11, 2016

Plasmonic trapping and tuning of a gold nanoparticle dimer

Zhe Shen and Lei Su

We demonstrate theoretically the trapping and manipulating of a gold nanoparticle dimer, using surface plasmon excited by a focused linearly-polarized laser beam on a silver film. We use both finite-difference time-domain force analysis and Maxwell stress tensor to show that the gold nanoparticle dimer can be trapped by a virtual probe pair. A formula is derived to represent the plasmonic field, suggesting that the gap between the two gold nanoparticles in the dimer can be controlled, for example, by tuning the excitation-laser wavelength. We further test our theory by successfully trapping nanoparticle dimers formed by nanospheres and nanorods. The controllable gap in between the nanoparticles can lead to tunable localized surface plasmon resonances, and this may find new exciting applications in plasmonic sensing or in lab-on-a-chip devices.

DOI

No comments: