.

Tuesday, March 8, 2016

Maxwell stress induced optical torque upon gold prolate nanospheroid

Jiunn-Woei Liaw, Ying-Syuan Chen, Mao-Kuen Kuo

This study theoretically analyzes the surface traction on an elongated Au prolate nanospheroid to examine the resultant optical torque exerted by an optical tweezers. The multiple multipole method is applied to evaluate quantitatively the electromagnetic field induced by a linearly polarized plane wave illuminating a nanospheroid, then obtaining the surface traction in terms of Maxwell stress tensor. The optical torque is calculated by the surface integral of the cross product of position vector and traction over the nanospheroid’s surface. Our results show that two pairs of positive and negative traction zones at the two apexes of the nanospheroid play a critical role. Furthermore, the resultant optical torque is wavelength-dependent. If the wavelength is shorter than the longitudinal surface plasmon resonance (LSPR) of the nanospheroid, the optical torque rotates the long axis of nanospheroid perpendicular to the polarization direction of the incident wave. In contrast, if the wavelength is longer than the LSPR the long axis is pushed parallel to the polarization direction. The turning point with a null torque, between the perpendicular and parallel modes, is at the LSPR. The optical performance of Au nanospheroid is equivalent to that of Au NR with the same volume and aspect ratio, but the LSPR of Au NR is little red-shifted from that of an equivalent prolate spheroid.

DOI

No comments: