.

Tuesday, November 24, 2015

MD Simulation of Brownian Motion of Buckminsterfullerene Trapping in Nano-Optical Tweezers

M. Y. Abdollahzadeh Jamalabadi

Optical tweezers are a relatively new technique for non-invasive manipulation tool in biology and physics for studying single molecules. Brownian motion of a trapped particle poses a challenge to develop the Optical tweezers. Standard methods to analyze the optical tweezers data rely on using power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers for macro scales. In this study the well-known MD code, GROMACS, is modified to find the variation of position and velocity of all atoms in the system of buckminsterfullerene solved in water. By applying the statistical methods our molecular dynamics simulations reveals the diffusion coefficient of the motion and the standard deviation of the Brownian motion. The simulation of system performs for the variety of trap constant and a model for estimation of the diffusion coefficient and the standard deviation of the Brownian motion is presented. Finally, experimental results are discussed based on the proposed model.

DOI

No comments: