D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, F. Alzina, A. Pitanti, A. Griol, A. Martínez & C. M. Sotomayor Torres
We report a novel injection scheme that allows for “phonon lasing” in a one-dimensional opto-mechanical photonic crystal, in a sideband unresolved regime and with cooperativity values as low as 10−2. It extracts energy from a cw infrared laser source and is based on the triggering of a thermo-optical/free-carrier-dispersion self-pulsing limit-cycle, which anharmonically modulates the radiation pressure force. The large amplitude of the coherent mechanical motion acts as a feedback that stabilizes and entrains the self-pulsing oscillations to simple fractions of the mechanical frequency. A manifold of frequency-entrained regions with two different mechanical modes (at 54 and 122 MHz) are observed as a result of the wide tuneability of the natural frequency of the self-pulsing. The system operates at ambient conditions of pressure and temperature in a silicon platform, which enables its exploitation in sensing, intra-chip metrology or time-keeping applications.
DOI
No comments:
Post a Comment