.

Tuesday, September 8, 2015

Enhanced optical trapping via structured scattering

Michael A. Taylor, Muhammad Waleed, Alexander B. Stilgoe, Halina Rubinsztein-Dunlop & Warwick P. Bowen

Interferometry can completely redirect light, providing the potential for strong and controllable optical forces. However, small particles do not naturally act like interferometric beamsplitters and the optical scattering from them is not generally thought to allow efficient interference. Instead, optical trapping is typically achieved via deflection of the incident field. Here, we show that a suitably structured incident field can achieve beamsplitter-like interactions with scattering particles. The resulting trap offers order-of-magnitude higher stiffness than the usual Gaussian trap in one axis, even when constrained to phase-only structuring. We demonstrate trapping of 3.5–10.0 μm silica spheres, achieving a stiffness up to 27.5 ± 4.1 times higher than was possible using Gaussian traps as well as a two-orders-of-magnitude higher measured signal-to-noise ratio. These results are highly relevant to many applications, including cellular manipulation, fluid dynamics, micro-robotics and tests of fundamental physics.

No comments: