.

Friday, February 20, 2015

Nonequilibrium Fluctuations for a Single-Particle Analog of Gas in a Soft Wall

Dong Yun Lee, Chulan Kwon, and Hyuk Kyu Pak

We investigate the motion of a colloidal particle driven out of equilibrium by a time-varying stiffness of the optical trap that produces persistent nonequilibrium work. Measurements of work production for repeated cycles composed of the compression and expansion processes for the optical potential show huge fluctuations due to thermal motion. Using a precise technique to modulate the stiffness in time, we accurately estimate the probability distributions of work produced for the compression and expansion processes. We confirm the fluctuation theorem from the ratio of the two distributions. We also show that the average values of work for the two processes comply with the Jarzynski equality. This system has an analogy with a gas in a breathing soft wall. We discuss about its applicability to a heat engine and an information engine operated by feedback control.

DOI

No comments: