Xue Gou, Hao Yang, Tarek M Fahmy, Yong Wang, Dong Sun
Cell migration refers to the directional cell movement in response to a chemoattractant gradient, a key process that occurs in a wide variety of biological phenomena. Cell protrusion force is generated by the actin polymerization of a cell, which drives the cell to move toward the stimulus as induced by the chemoattractant gradient. This paper presents a new methodology for the direct measurement of cell protrusion force utilizing a robot-aided optical tweezer system. The functionalized beads that are robotically trapped and placed near the cell serve as both cell migration stimulators and protrusion force probes. The force generated by the actin polymerization of the cell propels the bead to move away from the trapping center when the cell comes in contact with the bead. Such a deviation can be determined and used to calculate the trapping force, which is equal to the protrusion force at a balanced position. With the quantitative measurement of the protrusion, we find that the protrusion force of a live cell in response to a chemoattractant within the range of hundreds of piconewtons. We further probe the protrusion force distribution at the cell leading edge and find that the highest protrusion force appears at the cell migration direction. These measurements can help us characterize the mechanism of cell migration and lay a solid foundation for further proactive control of cell movement.
DOI
No comments:
Post a Comment