.

Monday, April 22, 2013

Dynamic microbead arrays for biosensing applications

Mael Manesse, Aaron F. Phillips, Christopher N. LaFratta, Manuel A. Palacios, Ryan B. Hayman and David R Walt
In this paper we present the development of an optical tweezers platform capable of creating on-demand dynamic microbead arrays for the multiplexed detection of biomolecules. We demonstrate the use of time-shared optical tweezers to dynamically assemble arrays of sensing microspheres, while simultaneously recording fluorescence signals in real time. The detection system is able to achieve multiplexing by using quantum dot nanocrystals as both signaling probes and encoding labels on the surface of the trapped microbeads. The encoding can be further extended by using a range of bead sizes. Finally, the platform is used to detect and identify three genes expressed by pathogenic strains of Escherichia coli O157:H7. The in situ actuation enabled by the optical tweezers, combined with multiplexed fluorescence detection offers a new tool, readily adaptable to biosensing applications in microfluidic devices, and could potentially enable the development of on-demand diagnostics platforms.
DOI

No comments: