Thursday, March 28, 2013

Observation of Backaction and Self-Induced Trapping in a Planar Hollow Photonic Crystal Cavity

Nicolas Descharmes, Ulagalandha Perumal Dharanipathy, Zhaolu Diao, Mario Tonin, and Romuald Houdré
The optomechanical coupling between a resonant optical field and a nanoparticle through trapping forces is demonstrated. Resonant optical trapping, when achieved in a hollow photonic crystal cavity is accompanied by cavity backaction effects that result from two mechanisms. First, the effect of the particle on the resonant field is measured as a shift in the cavity eigenfrequency. Second, the effect of the resonant field on the particle is shown as a wavelength-dependent trapping strength. The existence of two distinct trapping regimes, intrinsically particle specific, is also revealed. Long optical trapping (>10  min) of 500 nm dielectric particles is achieved with very low intracavity powers (<120  μW).
Post a Comment