We developed a photonic force microscope that can map multiple parameters simultaneously, including the surface topography and biomolecular interactions. To track the position of the probe bead and to determine contact position with the sample surface, we adopted a video analysis method using the diffraction pattern of monochromatic light passing through the probe bead. To demonstrate the capability of the microscope, we report the simultaneous measurement of the molecule distribution of DNA oligonucleotides on the surface, the binding strength of DNA hybridization between the bead and surface, and the topography of the smooth moulded surface.
Concisely bringing the latest news and relevant information regarding optical trapping and micromanipulation research.
.
Tuesday, October 30, 2012
Simultaneous detection of biomolecular interactions and surface topography using photonic force microscopy
Seungjin Heo, Kipom Kim, Rodriguez Christophe, Tae-Young Yoon, Yong-Hoon Cho
We developed a photonic force microscope that can map multiple parameters simultaneously, including the surface topography and biomolecular interactions. To track the position of the probe bead and to determine contact position with the sample surface, we adopted a video analysis method using the diffraction pattern of monochromatic light passing through the probe bead. To demonstrate the capability of the microscope, we report the simultaneous measurement of the molecule distribution of DNA oligonucleotides on the surface, the binding strength of DNA hybridization between the bead and surface, and the topography of the smooth moulded surface.
We developed a photonic force microscope that can map multiple parameters simultaneously, including the surface topography and biomolecular interactions. To track the position of the probe bead and to determine contact position with the sample surface, we adopted a video analysis method using the diffraction pattern of monochromatic light passing through the probe bead. To demonstrate the capability of the microscope, we report the simultaneous measurement of the molecule distribution of DNA oligonucleotides on the surface, the binding strength of DNA hybridization between the bead and surface, and the topography of the smooth moulded surface.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment