.

Thursday, August 9, 2012

Intrinsic fluctuations lead to broad range of transduced forces in tethered-bead single-molecule experiments

Shafigh Mehraeen and Andrew J. Spakowitz

We build a theoretical platform for predicting the behavior of tethered-bead single-molecule experiments, accounting for bead translational and rotational fluctuations, the specific type of experimental setup, and the detailed application of tension to the tether molecule. Within this framework, the external force applied to the bead is distinguished from the instantaneous force transduced to the tether molecule, resulting in a distinction between the observable response of the bead and the underlying force fluctuations felt by the tether that directly affect the biomolecular processes being studied. Our theoretical model indicates that the spread of the distribution of tether forces increases with applied external force, resulting in substantial deviations between the external and tether forces. We find that the impact of rotational and translational fluctuations of the bead motion is larger in magnetic tweezers than optical tweezers. However, this distinction diminishes at large external forces, and our asymptotic expressions offer a simple route for experimental analyses. Overall, our theory demonstrates that fluctuations in the tether molecule due to bead rotation and translation lead to a broad range of tether forces.

DOI

No comments: