.

Saturday, July 7, 2012

Calculation of radiation force and torque exerted on a uniaxial anisotropic sphere by an incident Gaussian beam with arbitrary propagation and polarization directions

Zheng-Jun Li, Zhen-Sen Wu, Qing-Chao Shang, Lu Bai, and Chun-Hui Cao

On the basis of spherical vector wave functions and coordinate rotation theory, the expansion of the fields of an incident Gaussian beam with arbitrary propagation and polarization directions in terms of spherical vector wave functions is investigated, and beam shape coefficients are derived. Using the results of electromagnetic scattering by a uniaxial anisotropic sphere, the analytical expressions of the radiation force and torque exerted on a homogeneous absorbing uniaxial anisotropic sphere by the arbitrary incident Gaussian beam. We numerically analyze and discuss the following: the effects of an anisotropic absorbing dielectric on the axial and transverse radiation forces exerted by an off-axis Gaussian beam on a uniaxial anisotropic sphere; the variations in the axial, transverse, and resultant radiation forces (with incident angle β and polarization angle α) imposed by an obliquely Gaussian beam on a uniaxial anisotropic sphere; and the results on the characteristics of the three components of the radiation forces versus the center-to-center distance between the sphere and beam. Selected numerically results on the radiation torque exerted on a stationary uniaxial anisotropic transparent or absorbing sphere by a linearly polarized Gaussian beam are shown, and the results are compared with those exerted an isotropic sphere. The accuracy of the theory and code is confirmed by comparing the axial radiation forces with the results obtained from references.

DOI

No comments: