Bob M. Lansdorp and Omar A. Saleh
Single-molecule manipulation instruments, such as optical traps and magnetic tweezers, frequently use video tracking to measure the position of a force-generating probe. The instruments are calibrated by comparing the measured probe motion to a model of Brownian motion in a harmonic potential well; the results of calibration are estimates of the probe drag, α, and spring constant, κ. Here, we present both time- and frequency-domain methods to accurately and precisely extract α and κ from the probe trajectory. In the frequency domain, we discuss methods to estimate the power spectral density (PSD) from data (including windowing and blocking), and we derive an analytical formula for the PSD which accounts both for aliasing and the filtering intrinsic to video tracking. In the time domain, we focus on the Allan variance (AV): we present a theoretical equation for the AV relevant to typical single-molecule setups and discuss the optimal manner for computing the AV from experimental data using octave-sampled overlapping bins. We show that, when using maximum-likelihood methods to fit to the data, both the PSD and AV approaches can extract α and κ in an unbiased and low-error manner, though the AV approach is simpler and more robust.
DOI
Single-molecule manipulation instruments, such as optical traps and magnetic tweezers, frequently use video tracking to measure the position of a force-generating probe. The instruments are calibrated by comparing the measured probe motion to a model of Brownian motion in a harmonic potential well; the results of calibration are estimates of the probe drag, α, and spring constant, κ. Here, we present both time- and frequency-domain methods to accurately and precisely extract α and κ from the probe trajectory. In the frequency domain, we discuss methods to estimate the power spectral density (PSD) from data (including windowing and blocking), and we derive an analytical formula for the PSD which accounts both for aliasing and the filtering intrinsic to video tracking. In the time domain, we focus on the Allan variance (AV): we present a theoretical equation for the AV relevant to typical single-molecule setups and discuss the optimal manner for computing the AV from experimental data using octave-sampled overlapping bins. We show that, when using maximum-likelihood methods to fit to the data, both the PSD and AV approaches can extract α and κ in an unbiased and low-error manner, though the AV approach is simpler and more robust.
DOI
No comments:
Post a Comment