Takuya Iida
Due to the strong optical response of localized surface plasmon (LSP) in metallic nanoparticles (NPs), the light-induced force (LIF) is also strong and can be used for the control of their dynamics even at room temperature. However, properties of LIF are still unclear under the collective effects of LSP in multiple NPs. In this article, I discuss the fundamental properties of LIF exerted on metallic NPs taking into account photomediated interaction between NPs, and light-induced dynamics of NPs in fluid medium (for example, water) in the presence of the thermal fluctuations. Remarkably, it has been clarified that the collective optical response of LSP can be greatly modulated through the dynamical pattern formation process of NPs by LIF.
DOI
Due to the strong optical response of localized surface plasmon (LSP) in metallic nanoparticles (NPs), the light-induced force (LIF) is also strong and can be used for the control of their dynamics even at room temperature. However, properties of LIF are still unclear under the collective effects of LSP in multiple NPs. In this article, I discuss the fundamental properties of LIF exerted on metallic NPs taking into account photomediated interaction between NPs, and light-induced dynamics of NPs in fluid medium (for example, water) in the presence of the thermal fluctuations. Remarkably, it has been clarified that the collective optical response of LSP can be greatly modulated through the dynamical pattern formation process of NPs by LIF.
DOI
No comments:
Post a Comment