Poonam Kumari, J. A. Dharmadhikari, A. K. Dharmadhikari, H. Basu, S. Sharma, and D. Mathur
We report on optical trapping in a weakly absorbing medium, hemin, an iron-containing porphyrin that is an important component of hemoglobin. By altering the hemin concentration we are able to control the amount of optical energy that is absorbed; changing the hemin concentration from <12 mg/ml to >45 mg/ml enables the onset of thermal trapping to be observed. By estimating the trap strength using two different methods we are readily able to differentiate between the optical trapping and thermal trapping regimes. We also deduce the rise in temperature that occurs within the laser focal volume: temperature changes of 5-24 K are observed for laser power values of 10-90 mW for hemin concentrations of 0-50 mg/ml.
We report on optical trapping in a weakly absorbing medium, hemin, an iron-containing porphyrin that is an important component of hemoglobin. By altering the hemin concentration we are able to control the amount of optical energy that is absorbed; changing the hemin concentration from <12 mg/ml to >45 mg/ml enables the onset of thermal trapping to be observed. By estimating the trap strength using two different methods we are readily able to differentiate between the optical trapping and thermal trapping regimes. We also deduce the rise in temperature that occurs within the laser focal volume: temperature changes of 5-24 K are observed for laser power values of 10-90 mW for hemin concentrations of 0-50 mg/ml.
No comments:
Post a Comment