Hsin-Hung Lin , Yen-Chang Li , Chih-Hao Chang , Chun Liu , Alice L Yu , and Chung-Hsuan Chen
Detection of cellular changes at single-cell level has a great potential for biomedical and biopharmaceutical applications. Raman spectroscopy is an important tool for single-cell molecular imaging analysis. Raman spectroscopy can provide time-resolved information of the selected biomolecular distributions inside a single cell without the need of chemical labeling. In this study, we monitored the cellular responses to antineoplastic drug at a single cell basis with Raman spectroscopy. We demonstrated that single nuclei Raman spectroscopy has the ability to detect and identify nuclear changes related to cytotoxicity at lower concentrations and in shorter time span than conventional cell based assays. Thus, this strategy of using Raman spectroscopy of single, isolated nuclei may be very valuable for rapid and sensitive detection of cellular changes in response to chemotherapeutic agents.
DOI
Detection of cellular changes at single-cell level has a great potential for biomedical and biopharmaceutical applications. Raman spectroscopy is an important tool for single-cell molecular imaging analysis. Raman spectroscopy can provide time-resolved information of the selected biomolecular distributions inside a single cell without the need of chemical labeling. In this study, we monitored the cellular responses to antineoplastic drug at a single cell basis with Raman spectroscopy. We demonstrated that single nuclei Raman spectroscopy has the ability to detect and identify nuclear changes related to cytotoxicity at lower concentrations and in shorter time span than conventional cell based assays. Thus, this strategy of using Raman spectroscopy of single, isolated nuclei may be very valuable for rapid and sensitive detection of cellular changes in response to chemotherapeutic agents.
DOI
No comments:
Post a Comment