.

Monday, October 3, 2011

Unique single molecule binding of cardiac myosin binding protein-C to actin and phosphorylation-dependent inhibition of actomyosin motility requires 17 amino acids of the motif domain

Abbey Weith, Sakthivel Sadayappan, James Gulick, Michael J. Previs, Peter VanBuren, Jeffrey Robbins, David M. Warshaw

Cardiac myosin binding protein-C (cMyBP-C) has 11 immunoglobulin or fibronectin-like domains, C0 through C10, which bind sarcomeric proteins, including titin, myosin and actin. Using bacterial expressed mouse N-terminal fragments (C0 through C3) in an in vitro motility assay of myosin-generated actin movement and the laser trap assay to assess single molecule actin-binding capacity, we determined that the first N-terminal 17 amino acids of the cMyBP-C motif (the linker between C1 and C2) contain a strong, stereospecific actin-binding site that depends on positive charge due to a cluster of arginines. Phosphorylation of 4 serines within the motif decreases the fragments’ actin-binding capacity and actomyosin inhibition. Using the laser trap assay, we observed individual cMyBP-C fragments transiently binding to a single actin filament with both short (~ 20 ms) and long (~ 300 ms) attached lifetimes, similar to that of a known actin-binding protein, α-actinin. These experiments suggest that cMyBP-C N-terminal domains containing the cMyBP-C motif tether actin filaments and provide one mechanism by which cMyBP-C modulates actomyosin motion generation, i.e. by imposing an effective viscous load within the sarcomere.

DOI

No comments: