Clayton P. Lapointe, Thomas G. Mason, and Ivan I. Smalyukh
We demonstrate optical trapping and orientational control over colloidal particles having complex shapes in an anisotropic host fluid using a dynamic holographic optical tweezers system. Interactions between a colloidal particle and the toroidal intensity distributions of focused Laguerre-Gaussian beams allow for stable optical tweezing and provide a tunable tilt of the particle out of the focal plane. Use of an aligned nematic liquid crystal as the host fluid suppresses rotations about the optical axis arising from angular momentum transfer from the beam and effectively defines a rotational axis for the colloid within the trap.
DOI
We demonstrate optical trapping and orientational control over colloidal particles having complex shapes in an anisotropic host fluid using a dynamic holographic optical tweezers system. Interactions between a colloidal particle and the toroidal intensity distributions of focused Laguerre-Gaussian beams allow for stable optical tweezing and provide a tunable tilt of the particle out of the focal plane. Use of an aligned nematic liquid crystal as the host fluid suppresses rotations about the optical axis arising from angular momentum transfer from the beam and effectively defines a rotational axis for the colloid within the trap.
DOI
No comments:
Post a Comment