Zheng-Jun Li, Zhen-Sen Wu, and Qing-Chao Shang
Using the theory of electromagnetic scattering of a uniaxial anisotropic sphere, we derive the analytical expressions of the radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam. The beam’s propagation direction is parallel to the primary optical axis of the anisotropic sphere. The effects of the permittivity tensor elements εt and εz on the axial radiation forces are numerically analyzed in detail. The two transverse components of radiation forces exerted on a uniaxial anisotropic sphere, which is distinct from that exerted on an isotropic sphere due to the two eigen waves in the uniaxial anisotropic sphere, are numerically studied as well. The characteristics of the axial and transverse radiation forces are discussed for different radii of the sphere, beam waist width, and distances from the sphere center to the beam center of an off-axis Gaussian beam. The theoretical predictions of radiation forces exerted on a uniaxial anisotropic sphere are hoped to provide effective ways to achieve the improvement of optical tweezers as well as the capture, suspension, and high-precision delivery of anisotropic particles.
DOI
Using the theory of electromagnetic scattering of a uniaxial anisotropic sphere, we derive the analytical expressions of the radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam. The beam’s propagation direction is parallel to the primary optical axis of the anisotropic sphere. The effects of the permittivity tensor elements εt and εz on the axial radiation forces are numerically analyzed in detail. The two transverse components of radiation forces exerted on a uniaxial anisotropic sphere, which is distinct from that exerted on an isotropic sphere due to the two eigen waves in the uniaxial anisotropic sphere, are numerically studied as well. The characteristics of the axial and transverse radiation forces are discussed for different radii of the sphere, beam waist width, and distances from the sphere center to the beam center of an off-axis Gaussian beam. The theoretical predictions of radiation forces exerted on a uniaxial anisotropic sphere are hoped to provide effective ways to achieve the improvement of optical tweezers as well as the capture, suspension, and high-precision delivery of anisotropic particles.
DOI
No comments:
Post a Comment