Youhua Tan, Tsz-Kan Fung, Haixia Wan, Kaiqun Wang, Anskar Y. H. Leung, and Dong Sun
This letter reported the biophysical characterization of immunophenotypically distinct hematopoietic cells from normal and leukemic sources, through manipulation with optical tweezers at single cell level. The results show that the percentage of cells that are stretchable and their deformability are significantly higher in the more primitive cell populations. This study provides the evidence that normal and leukemic hematopoietic cell populations with distinct primitiveness exhibit differential biophysical properties. These findings raise a hypothesis that the high deformability may be related to the unique functions and activities of primitive hematopoietic cells.
DOI
This letter reported the biophysical characterization of immunophenotypically distinct hematopoietic cells from normal and leukemic sources, through manipulation with optical tweezers at single cell level. The results show that the percentage of cells that are stretchable and their deformability are significantly higher in the more primitive cell populations. This study provides the evidence that normal and leukemic hematopoietic cell populations with distinct primitiveness exhibit differential biophysical properties. These findings raise a hypothesis that the high deformability may be related to the unique functions and activities of primitive hematopoietic cells.
DOI
No comments:
Post a Comment