R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schäfer, and M. Steinhart
Moving micron-scale objects are strongly coupled to each other by hydrodynamic interactions. The strength of this coupling decays with the inverse particle separation when the two objects are sufficiently far apart. It has been recently demonstrated that the reduced dimensionality of a thin fluid layer gives rise to longer-ranged, logarithmic coupling. Using holographic tweezers we show that microrods display both behaviors interacting like point particles in three dimensions at large distances and like point particles in two dimensions for distances shorter then their length. We derive a simple analytical expression that fits our data remarkably well and further validate it with finite element analysis.
DOI
No comments:
Post a Comment