.

Tuesday, May 24, 2011

Force spectroscopy reveals multiple "closed states" of the muscle thin filament

Vijay S. Rao, Amy M. Clobes and William H. Guilford

Tropomyosin (Tm) plays a critical role in regulating contraction of striated muscle. The three-state model of activation posits that Tm exists in three positions on the thin filament: "blocked" in the absence of calcium when myosin cannot bind, "closed" when calcium binds troponin and Tm partially covers the myosin binding site, and "open" after myosin binding forces Tm completely off neighboring sites. However, we recently showed that actin filaments decorated with phosphorylated Tm are driven by myosin with greater force than bare actin filaments. This result cannot be explained by simple steric hindrance and suggests that Tm may have additional effects on actin-myosin interactions. We therefore tested the hypothesis that Tm and its phosphorylation state affect the rate at which single actin-myosin bonds form and rupture. Using a laser trap we measured the time necessary for the first bond to form between actin and rigor HMM, and the load-dependent durations of those bonds. Measurements were repeated in the presence of sub-saturating myosin-S1 to force Tm from the closed to the open state. Maximum bond lifetimes increased in the open state, but only when Tm was phosphorylated. While the frequency with which bonds formed was extremely low in the closed state, when a bond did form it took significantly less time to do so than with bare actin. These data suggest there are at least two closed states of the thin filament, and that Tm provides additional points of contact for myosin.

DOI

No comments: