.

Friday, February 4, 2011

Simulation of lazer light propagation and thermal processes in red blood cells exposed to infrared laser tweezers

I. Krasnikov, A. Seteikin and I. Bernhardt

Continuous-wave laser micro-beams are generally used as diagnostic tools in laser scanning microscopes or, in the case of near-infrared micro-beams, as optical traps for cell manipulation and force characterization. Because single beam traps are created with objectives of high numerical aperture, typical trapping intensities and photon flux densities are in the order of 106 W/cm2 and 103 cm−2 s−1, respectively. These extremely high fields may induce two-photon absorption processes and anomalous biological effects. We studied effects occurring in red blood cells (RBCs) radiated by near-infrared laser tweezers λ = 1064 nm). The main idea of our study was to investigate the thermal reaction of RBCs irradiated by laser micro-beam. It is supported by the fact that many experiments have been carried out on RBCs using laser near infrared tweezers. Usually they are relatively long lasting and the thermal aspects of such experiments are not examined. In the present work it has been identified that the laser affects a RBC with a density of absorbed energy at approximately 107 J/cm3, which causes a temperature rise in the cell of about 10–15°C.

DOI

No comments: