Paul B. Bareil and Yunlong Sheng
We analyze the trap stiffness and trapping force potential for a nano-cylinder trapped in the optical tweezers against its axial and lateral shift and tilt associated to the natural Brownian motion. We explain the physical properties of the optical trapping by computing and integrating the radiation stress distribution on the nano-cylinder surfaces using the T-matrix approach. Our computation shows that the force stiffness to the lateral shift is several times higher than that to the axial shift of the nano-cylinder, and lateral torque due to the stress on the side-face is 1-2 orders of magnitude higher than that on the end-faces of a nano-cylinder with the aspect ratio of 2 – 20. The torque due to the stress on the nano-cylinder surface is 2-3 orders of magnitude higher than the spin torque. We explain why a nano-cylinder of low aspect ratio is trapped and aligned normal to the trapping beam axis.
DOI
No comments:
Post a Comment