.

Thursday, November 18, 2010

Optical trapping of dielectric nanoparticles in resonant cavities

Juejun Hu, Shiyun Lin, Lionel C. Kimerling, and Kenneth Crozier

We theoretically investigate the opto-mechanical interactions between a dielectric nanoparticle and the resonantly enhanced optical field inside a high Q, small-mode-volume optical cavity. We develop an analytical method based on open system analysis to account for the resonant perturbation due to particle introduction and predict trapping potential in good agreement with three-dimensional (3D) finite-difference time-domain (FDTD) numerical simulations. Strong size-dependent trapping dynamics distinctly different from free-space optical tweezers arise as a consequence of the finite cavity perturbation. We illustrate single nanoparticle trapping from an ensemble of monodispersed particles based on size-dependent trapping dynamics. We further discover that the failure of the conventional dipole approximation in the case of resonant cavity trapping originates from a new perturbation interaction mechanism between trapped particles and spatially localized photons.

DOI

No comments: